

Agilent 4287A RF LCR Meter 1 MHz - 3 GHz

Data Sheet

Specifications

Specifications describe the instrument's warranted performance over the temperature range of 5 °C to 40 °C (except as noted). Supplemental performance characteristics are intended to provide helpful information for using certain non-warranted performance parameters with the instrument. These are denoted as SPC (supplemental performance characteristics), typical, or nominal. Warmup time must be greater than or equal to 30 minutes after power on for all specifications.

Measurement parameters

Impedance parameters Z , Y , Ls, Lp, Cs, Cp, Rs, Rp, X, G, B, D, Q, θz [°], θz [rad], θy [°], θy [rad] (A maximum of four parameters can be displayed at or time.)
--

Measurement range

calibration temperature	Measurement range	$\begin{array}{l} 200 \mbox{ m}\Omega \mbox{ to 3 k}\Omega \\ (Frequenc \mbox{ y = 1 MHz}, \\ Averaging factor = 8, \\ Oscillator level \ge -33 \mbox{ dBm}, \\ Measurement uncertainty \le \pm 10 \ \%, \\ Calibration is performed within 23 \ ^{\circ}C \ \pm 5 \ ^{\circ}C, \\ Measurement is performed within \ \pm 5 \ ^{\circ}C \ from the \\ calibration temperature \end{array}$
-------------------------	-------------------	---

Source characteristics

Frequency

Range	1 MHz to 3 GHz			
Resolution	100 kHz			
Uncertainty	± 10 ppm (23 °C ± 5 °C) ± 20 ppm (5 °C to 40 °C)			

Oscillator level

Range	
Cable length: 1m	
Power (when 50 Ω LOAD is connected to the test port)	 -40 dBm to 1 dBm (Frequency ≥ 1 GHz) -40 dBm to 0 dBm (Frequency > 1 GHz^{*1})
Current (when SHORT is connected to the test port)	0.0894 mA _{rms} to 10 mA _{rms} (Frequency \ge 1 GHz) 0.0894 mA _{rms} to 8.94 mA _{rms} (Frequency > 1 GHz ^{*1})
Voltage (when OPEN is connected to the test port)	4.47 mV _{rms} to 502 mV _{rms} (Frequency \ge 1 GHz) 4.47 mV _{rms} to 447 mV _{rms} (Frequency > 1 GHz ^{*1})
Cable length: 2m	(when Option 4287A-020 is used)
Power	Subtract the following attenuation from the power (setting value) at 1 m cable length: Attenuation [dB] = 0.37×√F (F: Frequency [GHz])
Resolution	0.1 dB ^{*2}
Uncertainty	
Cable length: 1 m	
Power (when 50 Ω LOAD is connected to the test port)	
Frequency ≤1 GHz	± 2 dB (23 ± 5 °C) ± 4 dB (5 °C to 40 °C)
Frequency > 1 GHz	± 3 dB (23 ±5 °C) ± 5 dB (5 °C to 40 °C)
Cable length: 2 m	(when Option 4287A-020 is used)
Power	Add 1 dB to the uncertainty at 1 m cable length.

Output Impedance

Output impedance	50 Ω (nominal)
Output Impedance	SU 52 (nominal)

 ^{*1.} It is possible to set more than 0 dBm (447 mV, 8.94 mA) oscillator level at frequency > 1 GHz. However, the characteristics at this setting are not guaranteed.
 *2. When the unit is set at mV or mA, the entered value is rounded to 0.1 dBm resolution.

Measurement accuracy

Conditions of accuracy specifications

Temperature	23 ± 5 °C			
Accuracy-specified plane	7-mm connector of 3.5-mm-7-mm adapter connected to 3.5-mm terminal of test heads			

Measurement uncertainty

When OPEN/SHORT/LOAD calibration is performed:					
Z , Y	$\pm (E_{a} + E_{b}) [\%]$				
q	$\pm \frac{(E_a + E_b)}{100} \text{ [rad]}$				
L, C, X, B	$\pm (E_{a} + E_{b}) \times \sqrt{(1 + D_{x}^{2})} \ [\%]$				
R, G	$\pm (E_{a} + E_{b}) \times \sqrt{(1 + \Omega_{x}^{2})}$ [%]				
D					
$\operatorname{at}\left D_{x} \operatorname{tan}\left(\frac{E_{a} + E_{b}}{100}\right)\right < 1$	$\pm \frac{(1 + D_x^2) \tan\left(\frac{E_a + E_b}{100}\right)}{1 \pm D_x \tan\left(\frac{E_a + E_b}{100}\right)}$				
at $D_x \leq 0.1$	$\pm \frac{E_a + E_b}{100}$				
Q					
$\operatorname{at}\left \Omega_{x} \operatorname{tan}\left(\frac{E_{a} + E_{b}}{100}\right)\right < 1$	$\pm \frac{(1 + \Omega_x^2) \tan\left(\frac{E_a + E_b}{100}\right)}{1 \pm \Omega_x \tan\left(\frac{E_a + E_b}{100}\right)}$				
at $\frac{10}{E_a + E_b} \ge 0_x \ge 10$	$\pm Q_x^2 \frac{E_a + E_b}{100}$				

When OPEN/SHORT/LOAD/LOW- LOSS C calibration is performed (SPC):	
Z , Y	$\pm (E_{a} + E_{b}) [\%]$

q	$\pm \frac{E_c}{100}$ [rad]
L, C, X, B	$\pm \sqrt{(E_a + E_b)^2 + (E_c D_x)^2}$ [%]
R, G	$\pm \sqrt{(E_a + E_b)^2 + (E_c Q_x)^2}$ [%]
D	
$\left D_{x} \tan \left(\frac{E_{c}}{100} \right) \right < 1$	$\pm \frac{(1 + D_x^2) \tan\left(\frac{E_c}{100}\right)}{1 \pm D_x \tan\left(\frac{E_c}{100}\right)}$
D _x ≤ 0.1	$\pm \frac{E_c}{100}$
Q	
$\left \Omega_x \tan\left(\frac{E_{c}}{100}\right)\right < 1$	$\pm \frac{(1 + \Omega_x^2) \tan\left(\frac{E_c}{100}\right)}{1 \pm \Omega_x \tan\left(\frac{E_c}{100}\right)}$
$\frac{10}{E_{c}} \ge Q_{x} \ge 10$	$\pm 0_x^2 \frac{E_c}{100}$

Definition of each parameter

$D_{\chi} =$	Measurement value of D
Q _x =	Measurement value of Q
E _a =	(Within ± 5 °C from the calibration temperature. Measurement accuracy applies when the calibration is performed at 23 °C ± 5 °C. When the calibration is performed beyond 23 °C ± 5 °C, the measurement accuracy decreases to half that described.)
Oscillator level ≥ –33 dBm	
Frequency ≥1 MHz, ≤ 100 MHz	± 0.65 [%]
Frequency > 100 MHz, ≤ 500 MHz	± 0.8 [%]
Frequency > 500 MHz, ≤ 1 GHz	± 1.2 [%]
Frequency > 1 GHz, ≤ 1.8 GHz	± 2.5 [%]

Frequency > 1.8 GHz, ≤ 3 GHz	± 5 [%]
Oscillator level < –33 dBm	
Frequency ≥ 1 MHz, ≤ 100 MHz	±1[%]
Frequency > 100 MHz, ≤ 500 MHz	± 1.2 [%]
Frequency > 500 MHz, ≤1 GHz	± 1.2 [%]
Frequency > 1 GHz, ≤ 1.8 GHz	± 2.5 [%]
Frequency > 1.8 GHz, ≤ 3 GHz	± 5 [%]
E _b =	$\pm \left(\frac{Z_s}{ Z_x } + Y_o \bullet Z_x \right) \times 100 \ [\%]$ (Z_x : Measurement value of Z)
E _c =	$\pm \left(0.06 + \frac{0.08 \times F}{1000} \right) [\%] (F: Frequency [MHz])$
Z _s =	(Within \pm 5 °C from the calibration temperature. Measurement accuracy applies when the calibration is performed at 23 °C \pm 5 °C. When the calibration is performed beyond 23 °C \pm 5 °C, the measurement accuracy decreases to half that described.)
Oscillator level $\ge -33 \text{ dBm}$, Averaging factor ≥ 8	\pm (20 + 0.5 \times F) [m Ω] (F: Frequency [MHz])
Oscillator level ≥ –33 dBm, Averaging factor < 7	\pm (50 + 0.5 \times F) [m Ω] (F: Frequency [MHz])
Oscillator level ≥ -33 dBm,	\pm (100 + 0.5 $ imes$ F) [m Ω] (F: Frequency [MHz])
Y _o =	(Within ± 5 °C from the calibration temperature. Measurement accuracy applies when the calibration is performed at 23 °C ± 5 °C. When the calibration is performed beyond 23 °C ± 5 °C, the measurement accuracy decreases to half that described.)
Oscillator level ≥ -33 dBm, Averaging factor ≥ 8	\pm (30 + 0.15 \times F) [µS] (F: Frequency [MHz])
Oscillator level ≥ −33 dBm, Averaging factor < 7	\pm (50 + 0.15 \times F) [µS] (F: Frequency [MHz])
Oscillator level \geq –33 dBm,	\pm (100 + 0.15 \times F) [µS] (F: Frequency [MHz])

NOTE: At the following points, measurement error may exceed the specifications described here due to the 4287A's spurious characteristics:

109.7 MHz, 153.6 MHz, 177.2 MHz, 256.0 MHz, 329.1 MHz, 460.8 MHz, 768.0 MHz

Examples of calculated impedance measurement accuracy

Figure 1. Oscillator level \geq –33 dBm, averaging factor \geq 8, temperature deviation \leq 5 °C

Figure 2. Oscillator level \geq –33 dBm, averaging factor \leq 7, temperature deviation \leq 5 °C

Figure 3. Oscillator level < –33 dBm, temperature deviation \leq 5 °C

Timing chart and measurement time (Typical)

Timing chart of handler interface signal (Typical)

Figure 4. Timing chart of handler interface

Table 1. Value T1 through T7 (Typical)

		Test Condition		Timing				
		Screen setting	Display	R _{dc} meas.	Comparator	Min.	Median	Max.
T1	Trigger pulse width	-	-	-	-	2µs	-	-
T2	Trigger response time of Ready_for_Trig	-	-	-	-	-	0.3 ms	0.5 ms
Т3	Trigger response time of INDEX and EOM	-	-	-	-	-	0.4 ms	0.6 ms
T4	Measurement	-	-	Off	-	-	5.7 ms	5.9 ms
	time (*1)	-	-	On	-	-	7.5 ms	7.7 ms
T5	Measurement data	-	-	-	Off	-	0.3 ms	0.4 ms
	calculation time	-	-	-	On	-	0.4 ms	0.4 ms
T6	Ready_for_Trig setting time	1 point meas. Ls-Q meas.	Off	-	-	-	0.1 ms	0.3 ms
		1 point meas. Ls-Q meas.	On	On	On	-	9.8 ms	10.2 ms
		List meas.						
		3 points meas. Ls-Q meas.	On	On	On	-	9.8 ms	10.2 ms
Т7	Trigger wait time	-	-	-	-	0	-	-

*1: 1 point measurement, Trigger delay=0, Point delay=0

Details of measurement time (T4)

Figure 6. Measurement time T4 at list measurement

Error correction function

Available calibration and compensation

OPEN/SHORT/LOAD Calibration	Connect OPEN, SHORT, and LOAD standards to the desired reference plane and measure each kind of calibration data. The reference plane is called calibration reference plane.
Low-Loss Capacitor Calibration	Connect the dedicated standard (Low-Loss Capacitor) to the calibration reference plane and measure the calibration data.
Port Extension Compensation (Fixture Selection)	When a device is connected to the terminal that is extended from the calibration reference plane, set the electrical length between the calibration plane and the device contact. Select a model number of the registered test fixtures in the 4287A's softkey menu or enter the electrical length for user's test fixture.
OPEN/SHORT Compensation	When a device is connected to the terminal that is extended from the calibration reference plane, make OPEN and SHORT states at the device contact and measure each kind of compensation date.

Calibration/compensation data measurement point

Data Measurement Points	Same as measurement points which is set in the measurement point setup display. (Changing the frequency or oscillator level settings after the calibration or compensation makes the calibration and compensation data invalid.)
1	1 <i>'</i>

DC resi	stance	(Rdc)) measurement	t
---------	--------	-------	---------------	---

Measurement range	0.1 Ω to 100 Ω
Measurement resolution	1 mΩ
Test signal level	1 mA (maximum)
Error correction	OPEN/SHOR T/LOAD Calibration, OPEN/SHORT Compensation. (Changing the frequency or oscillator level settings after the calibration or compensation makes the calibration and compensation data invalid.)
Measurement uncertainty	$ \begin{split} \pm & \left[1 + \left(\frac{0.05}{R_{dut}} + \frac{R_{dut}}{10000}\right) \times 100\right] [\%] \\ R_{dut} \cdot DC \ resistance \ measurement \ v \ alue \ [\Omega] \\ (Within \pm 5 \ ^{\circ}C \ from \ the \ calibration \ temperature. \\ Measurement \ accuracy \ applies \ when \ the \ calibration \ is \ performed \ at \ 23 \ ^{\circ}C \ \pm 5 \ ^{\circ}C. \ When \ the \ calibration \ is \ performed \ beyond \ 23 \ ^{\circ}C \ \pm 5 \ ^{\circ}C, \ the \ measurement \ accuracy \ decreases \ to \ half \ that \ described.) \end{split} $

Trigger function

Trigger mode	Internal, External (external trigger input connector or
	handler interface), Bus (GPIB or LAN), Manual (front key)

Averaging function

Setting range	1 to 100 (integer)
---------------	--------------------

Display

Type/Size	Color LCD, 8.4 inch
Resolution	640 dots $ imes$ 480 lines

List measurement function

Number of measurement points	32 points for each table (maximum)
Number of tables	8 tables

Test signal level monitor function

Mass storage

Built-in flexible disk drive	3.5 inch, 720 KByte or 1.44 KByte, DOS format
Built-in hard disc drive	About 18 GByte

Interface

GPIB

Standard conformity	IEEE 488.1-1987,IEEE 488.2-1987
Available functions (function code)	SH1,AH1,T6,TE0,L4,LE0,SR1,RL0,PP0, DT1,DC1,C0,E2
Numerical data transfer format	ASCII
Protocol	IEEE 488.2-1987

Handler interface

Connector type	36 pin D-SUB connector
Signal type	Negative logic, opto-isolated, open collector output
Output signal	 BIN sort result (BIN 1 to BIN 13, OUT_OF_GOOD_BINS) DC resistance pass/fail (DCR_OUT_OF_RANGE) Overload (OVLD) Alarm (ALARM) End of analog measurement (INDEX) End of measurement (EOM) Ready for trigger (READY_FOR_TRIG)
Input signal	 External trigger (EXT_TRIG) K ey lock (KEY_LOCK)
Pin location	See the follo wing figure. Refer to Programming Manual for the definition of each pin.

LAN interface

Standard conformity	10 Base-T or 100 Base-TX (automatically switched), Ethertwist, RJ45 connector
Protocol	TCP/IP
Functions	Telnet, FTP

Measurement terminal (at test head)

Connector type	3.5-mm (female) connector (can be converted to 7-mm connector using the
	3.5 mm-7 mm adapter)

Rear panel connectors

External reference signal input connector

Frequency	10 MHz \pm 10 ppm (SPC)
Level	\geq 0 dBm (SPC)
Input impedance	50 Ω (nominal)
Connector type	BNC (female)

Internal reference signal output connector

Frequency	10 MHz (nominal)
Uncertainty of frequency	Same as frequency uncertainty described in"Source Characteristics" on page 3
Level	+2 dBm (nominal)
Output impedance	50 Ω (nominal)
Connector type	BNC (female)

External trigger input connector

Level	L O W threshold voltage: 0.5 V HIGH threshold voltage: 2.1 V Input le vel range: 0 to +5 V
Pulse width (Tp)	\geq 2 μsec (SPC) See Figure 8 for definition of Tp
Polarity	Positive or Negative (selective)
Connector type	BNC (female)

Environment conditions

Operating condition

Temperature	5 °C to 40 °C
Humidity (at wet bulb temperature ≤ 29 °C, without condensation)	
Flexible disk drive non-operating condition	20% to 80% RH
Flexible disk drive operating condition	15% to 90% RH
Altitude	0 to 2,000 m (0 to 6,561 feet)
Vibration	0.5 G maximum, 5 Hz to 500 Hz
Warmup time	30 minutes

Non-operating storage condition

Temperature	-20 °C to + 60 °C
Humidity (at wet bulb temperature \leq 45 °C, without condensation)	15% to 90% RH
Altitude	0 to 4,572 m (0 to 15,000 feet)
Vibration	1 G maximum, 5 Hz to 500 Hz

Other specifications

EMC CE ISM 1-A	European Council Directive 89/336/EEC IEC 61326-1:1997+A1 CISPR 11:1990 / EN 55011:1991 Group 1, Class A IEC 61000-4-2:1995 / EN 61000-4-2:1995 4 kV CD / 8 kV AD IEC 61000-4-3:1995 / EN 61000-4-3:1996 3 V/m, 27-1000 MHz, 80% AM IEC 61000-4-4:1995 / EN 61000-4-4:1995 1 kV power / 0.5 kV Signal IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV Normal / 1 kV Common IEC 61000-4-6:1996 / EN 61000-4-6:1996 3 V, 0.15-80 MHz, 80% AM IEC 61000-4-11:1994 / EN 61000-4-11:1994 100% 1cycle NO TE-1: When tested at 3 V/m according to EN 61000-4-3:1996, the measurement accuracy will be within specifications over the full immunity test frequency range of 27 to 1000 MHz except when the analyzer frequency is identical to the transmitted interference signal test frequency. NOTE-2: When tested at 3 V according to EN 61000-4-6:1996, the measurement accuracy will be within specifications over the full immunity test frequency is identical to the transmitted interference signal test frequency.
C N10149	AS/NZS 2064.1/2 Group 1, Class A
Safety CE ISM 1-A	European Council Directive 73/23/EEC IEC 61010-1:1990+A1+A2 / EN 61010-1:1993+A2 INSTALLATION CATEGORY II, POLLUTION DEGREE 2 INDOOR USE IEC60825-1:1994 CLASS 1 LED PRODUCT CAN/CSA C22.2 No. 1010.1-92
Power requirement	90 V to 132 V, or 198 V to 264 V (automatically switched), 47 Hz to 63 Hz, 350 VA max.
Weight	
Main unit	16 kg (SPC)
	1
l est head	0.3 kg (SPC)
l est head Dimensions	0.3 kg (SPC)
l est head Dimensions Main unit	0.3 kg (SPC) See Figure 9 through Figure 11

Figure 9. Main unit dimensions (front view, in millimeters, typical)

Figure 10. Main unit dimensions (rear view, in millimeters, typical)

Figure 11. Main unit dimensions (side view, in millimeters, typical)

Figure 12. Test head dimensions (in millimeters, typical)

Furnished accessories

Order model/option number	Description	Qty
Agilent 4287A	Agilent 4287A RF LCR meter (main unit)	1
	Test head (with 1 m cable)	1
	N (m)-SMA (f) adapter	3
	Wrench (for 3.5 mm/SMA connector)	1
	CD-ROM (Operation manual, Programming manual and Sample Program)	1

Options

4287A-004	Add working standard set	1
4287A-020	Add test fixture extension cable set	1
4287A-700	16195B calibration kit	1
4287A-710	Test fixture stand	1
4287A-720	3.5 mm - 7 mm coaxial adapter	1
4287A-810	Add keyboard	1
4287A-820	Add mouse	1
4287A-1A7	ISO 17025 compliant calibration	1
4287A-ABJ	Japan-Japanese localization	1
4287A-ABA	U.SEnglish localization	1
4287A-0BW	Add service manual	1
4287A-1CM	Rack flange kit	1
4287A-1CN	Front handle kit	1
4287A-1CP	Handle/rack mount kit	1

Option 4287A-004 Working Standard Set Characteristics

Furnished devices

Short device	1.0×0.5 mm (part number: 16191-29005) 1.6×0.8 mm (part number: 16191-29006) 2.0×1.25 mm (part number: 16196-29007) 3.2×1.6 mm (part number: 16196-29008)
Resistor	1.0×0.5 mm (part number: 5182-0433) 1.6×0.8 mm (part number: 5182-0434) 2.0×1.25 mm (part number: 5182-0435) 3.2×1.6 mm (part number: 5182-0436)

DC resistance

Resistor	$51\Omega\pm0.5\%$
----------	--------------------

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and

applications you select.

Agilent T&M Software and Connectivity

Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit **www.agilent.com/find/connectivity** for more information. For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States:

(tel) 800 829 4444 (fax) 800 829 4433

Canada:

(tel) 877 894 4414 (fax) 800 746 4866

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europe:

(tel) 31 20 547 2111

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea:

(tel) (080) 769 0800 (fax) (080)769 0900

Latin America:

(tel) (305) 269 7500

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com Contacts revised: 9/17/44

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003, 2004 Printed in USA, October 21, 2004 5968-5758E

