Errata

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. To reduce potential confusion, the only change to product numbers and names has been in the company name prefix: where a product number/name was HP XXXX the current name/number is now Agilent XXXX. For example, model number HP8648 is now model number Agilent 8648.

Ce manuel peut contenir des références à <<HP>> ou <<Hewlett-Packard.>> Veuillez noter que les produits de test et mesure, de semi-conducteur et d'analyse chimique qui avaient fait partie de la société Hewlett-Packard sont maintenent une partie de la société Agilent Technologies. Pour reduire la confusion potentielle, le seul changement aux noms de reference a été dans le préfixe de nom de société : là où un nom de référence était HP XXXX, le nouveau nom de référence est maintenant Agilent XXXX. Par example, le HP 8648 s'appelle maintenent Agilent 8648.

Diese Gebrauchsanweiseung kann Bezug nehmen auf die Namen HP oder Hewlett-Packard. Bitte beachten Sie, dass ehemalige Betriebsbereiche von Hewlett-Packard wie HP-Halbleiterprodukte, HP-chemische Analysen oder HP-Test- und Messwesen nun zu der Firma Agilent Technology gehören. Um Verwirrung zu vermeiden wurde lediglich bei Produktname und - Nummer der vo laufende Firmenname geändert: Produkte mit dem Namen/Nummer HP XXXX lauten nun mehr Agilent XXXX. Z.B, das Modell HP 8648 heißt nun Agilent 8648.

Questo manuale potrebbe contenere riferimenti ad HP o Hewlett-Packard. Si noti che le attività precedentemente gestite da Hewlett-Packard nel campo di Test & Misura, Semiconduttori, ed Analisi Chimica sono ora diventate parte di Agilent Technologies. Al fine di ridurre il rischio di confusione, l'unica modifica effettuata sui numeri di prodotto e sui nomi ha riguardato il prefisso con il nome dell'azienda : dove precedentemente compariva "HP XXXX" compare ora "Agilent XXXX". Ad esempio: il modello HP8648 è ora indicato come Agilent 8648.

Este manual puede hacer referencias a HP o Hewlett Packard. Las organizaciones de Prueba y Medición (Test and Measurement), Semiconductores (Semiconductor Products) y Análisis Químico (Chemical Analysis) que pertenecían a Hewlett Packard, ahora forman parte de Agilent Technologies. Para reducir una potencial confusión, el único cambio en el número de producto y nombre, es el prefijo de la compañía: Si el producto solía ser HP XXXX, ahora pasa a ser Agilent XXXX. Por ejemplo, el modelo HP8648 es ahora Agilent 8648.

这个手册里面可能含有惠普公司的资料。请注意惠普公司以前的测试,半导体产品,化学分析部门现在属于安捷伦公司。为了减少可能的误解,产品号码和名字只改变最前面的公司名字。如果一个产品的号码/名字以前是HP XXXX,现在的号码/名字是安捷伦 XXXX。例如模型号码是惠普8648。现在是模型号码安捷伦8648。

Document Part Number 5971-2668 Printed in Malaysia September 2004

_

HP 432A POWER METER

SERIAL NUMBERS

For important information about serial numbers see INSTRUMENT IDENTIFICATION in Section I.

© Copyright HEWLETT-PACKARD COMPANY 1968, 1972, 1998 1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

Manual Part No. 00432-90079

Page

TABLE OF CONTENTS

Section

Section		Page
I	GENI	ERAL INFORMATION 1-1
	1-1.	Description 1-1
	1-5.	Instrument Identification 1-1
	1-7.	Operating Environment 1-3
	1-11.	Cooling Requirements 1-3
	1-13.	Cleaning 1-3
II	INST	ALLATION
	2-1.	Initial Inspection
	2-2.	Mechanical Check 2-1
	2-4.	Performance Checks 2-1
	2-6.	Damage Claims 2-1
	2-9.	Three-Conductor Power Cable 2-1
	2-12.	Primary Power Requirements 2-1
	2-14.	Internal Battery Operation 2-1
	2-16.	Battery Installation 2-1
	2-17.	Battery Storage 2-1
	2-19.	Rack Mounting 2-1
	2-21.	Combining Case 2-1
	2-23.	Adapter Frames 2-2
	2-25.	Repacking for Shipment 2-2
III	OPEF	RATING INFORMATION
	3-1.	Introduction
	3-4.	Controls, Connectors and Indicators . 3-1
	3-12.	Battery Operation 3-1
	3-17.	Microwave Power Measurement Accuracy
	3-23.	Calibrator Factor and Effective
		Efficiency
	3-27.	Precision Power Measurement 3-2
	3-28.	General
	3-30.	Measurement Procedure 3-2
IV	PRIN	CIPLES OF OPERATION 4-1
	4-1.	Simplified Description 4-1
	4-5.	Functional Block Diagram 4-1
v	MAIN	JTENANCE
	5-1.	Introduction
	5-3.	Content 5-1
	5-4.	Performance Tests 5-1
	5-6.	Adjustments
	5-10.	Test Equipment 5-1
	5-12.	Service Information 5-1

V	MAIN	VTENANCE (Cont)
	5-14.	432A Performance Tests with
		8477A Calibrator 5-1
	5-15.	Initial Setup 5-1
	5-16.	Meter Accuracy Test
	5-17.	Calibration Factor Test 5-2
	5-18.	Meter Linearity Check 5-2
	5-19.	Zero Carryover Test
	5-20.	Fine Zero Range Check 5-3
	5-21.	432A Calibration Without
	0 = 1.	8477A Calibrator
	5-24.	Calibration Procedure 1 5-3
	5-26.	Calibration Procedure 2 5-9
	5-27.	Cover Removal and Replacement 5-9
	5-29.	Top Cover Removal
	5-30.	Top Cover Replacement
	5-31.	Bottom Cover Removal
	5-31.	Bottom Cover Replacement5-9
	5-32. 5-33.	Adjustment Procedures
	5-33.	Initial Setup
	5-34. 5-35.	Mechanical Meter
	0-00.	Adjustment
	5-36.	Bridge Amplifier Tests 5-10
	5-30. 5-37.	Meter and Recorder Output
	0-07.	Calibration
	5-38.	Battery Charger Adjustment
	J-J0.	(Option 01 Only) 5-11
	5-39.	Battery Removal
	5-39. 5-40.	Isolating Trouble in Transistor
	5-40.	Circuits
	E 40	
	5-46.	Out-of-Circuit Testing 5-13
	5-48.	Component Replacement in
	5 50	Etched Circuits
	5-50.	Axial-Lead Components 5-13
	5-52.	Other Components 5-14
VI	REDI	ACEABLE PARTS 6-1
VI	6-1.	Introduction
	6-3.	Ordering Information
	0-0.	
VII	TROU	JBLESHOOTING, SCHEMATICS,
		D COMPONENT LOCATIONS 7-1
	7-1.	Introduction
	7-5.	Troubleshooting
	7-8.	Schematics
	7-12.	A1A1 Auto Zero Assembly
	7-14.	Test Conditions

LIST OF TABLES

Number	Title Page	
1–1.	Specifications 1–1	
1 - 2.	Thermistor Mounts for the 432A 1–2	
5 - 1.	Recommended Test Equipment	
5-2.	Meter Accuracy Test	
5–3.	Calibration Factor Test	
5-4.	Performance Test Card	
5 - 5.	Out-of-Circuit Transistor Resistance	
	Measurements	
5-6.	Etched Circuit Soldering Equipment 5–13	
5-7.	Safe Ohmmeter Range for Transistor	
	Resistance Measurements 5–14	
6–1.	Replaceable Parts 6–2	
6-2.	Code List of Manufacturers	
7–1.	Schematic Notes	

Number	r Title Pa	age
7–2.	Overall Troubleshooting	7–5
7 - 3.	RF Bridge Troubleshooting	
7-4.	Compensation Bridge Troubleshooting 7	7–6
7-5.	Auto-Zero Troubleshooting	7—7
7-6.	Chopping and Summing Circuit	
	Troubleshooting	7—7
7–7.	5 kHz Multivibrator Troubleshooting 7	7—7
7–8.	Range Amplifier Troubleshooting	7—7
7–9.	Calibrator Factor Amplifier	
	Troubleshooting	7—7
7–10.	Pulse Width Modulator and Meter	
	Troubleshooting	7—7
7–11.	Battery Charger Troubleshooting	7–9
7 - 12.	Power Supply Troubleshooting	7–9

.

LIST OF ILLUSTRATIONS

Number	Title Page
1–1.	HP Model 432A Power Meter 1–0
1 - 2.	Instrument Identification 1–1
2-1.	Sub-module Installation in Rack Adapter
	Frame
2-2.	HP Model 1051A Combining Case
	Instrument Installation
3-1.	Precision Power Measurements
3-2.	Front Panel Controls, Connectors and
	Indicators
3–3.	Rear Panel Controls and Connectors 3–6
3-4.	Turn On and Zeroing Procedure 3–8
4–1.	Model 432A Simplified Block Diagram 4–0
4-2.	Model 432A Block Diagram 4–3
4–3.	Model 432A RF Bridge Talking
	Schematic 4–4
4-4.	Model 432A Meter Logic Talking
	Schematic 4–6
4-5.	Model 432A Power Supply Talking
	Schematic
5 - 1.	Check and Adjustment Test Setup 5–1
5-2.	Zero Carryover Test Setup 5–3
5 - 3.	Bridge Amplifier Test
5-4.	Transistor Biasing and Operating
	Characteristics 5–12

ge	Number	Title Page
-0	7–1.	Servicing Block Diagram
-1	7-2.	Model 432A Top Internal View
	7–3.	Model 432A Waveforms
-2	7-4.	Model 432A Test Point Locations
	7-5.	Model 432A Bottom View, Component
-2		Locations
-3	7–6.	Model 432A Front Panel Interior
	7–7.	A1 Bridge Assembly, Component
-4		Locations
-6	7–8.	Model 432A Rear Panel Interior
-8	7–9.	RF and Compensation Bridge
-0		Schematic Diagram
-3	7 - 10.	Model 432A Switches
	7–11.	A2 Meter Logic Assembly, Component
-4		Locations
	7 - 12.	Meter Logic Schematic Diagram
-6	7 - 13.	A2 Meter Logic Assembly, Power Supply
		Component Locations
-8	7 - 14.	A7 Battery Charging Circuit (Option 01)
-1		Component Locations
-3	7 - 15.	Power Supply, Schematic Diagram 7–15
10	7 - 16.	Thermistor Cable Wiring Diagram 7–16

Declaration of Conformity according to ISO/IEC Guide 22 and EN45014			
Manufacturer's Name: Hewlett-Packard Ltd.			
Manufacturer's Address:	Queensferry Microwave Division South Queensferry West Lothian, EH30 9TG Scotland, United Kingdom		
Declares that the product			
Product Name:	Thermistor Power Meter		
Model Numbers:	HP 432A		
Product Options:	This declaration covers only the standard option of the above product.		
	rements of European Council Directive 89/336/EEC on the ember states relating to electromagnetic compatibility.		
Against EMC test specifications EN	55011:1991 (Group 1, Class A) and EN 50082-1:1992		
As Detailed in:	Electromagnetic Compatibility (EMC)		
	Technical Construction File (TCF) No. A-5951-9852-02		
Assessed by:	DTI Appointed Competent Body EMC Test Centre, GEC-Marconi Avionics Ltd., Maxwell Building, Donibristle Industrial Park, KY11 5LB Scotland, United Kingdom		
Technical Report Number:6893/2200/CBR, dated 23 September 1997			
Supplementary Information:			
The product conforms to the following safety standards:			
EN 61010-1(1993) / IEC 1010-1(1990) +A1(1992) +A2(1994) CSA-C22.2 No. 1010.1-93			
The product herewith complies with and carries the CE-marking accordi	h the requirements of the Low Voltage Directive 73/23/EEC, ingly.		
South Queensferry, Scotland	17 November 1997 RM Lang		
Location	Date R.M. Evans / Quality Manager		

Warranty

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from:

- 1 Improper or inadequate maintenance, adjustment, calibration, or operation by Buyer;
- **2** Buyer-supplied software, hardware, interfacing or consumables;
- **3** Unauthorized modification or misuse;
- 4 Operation outside of the environmental and electrical specifications for the product;
- **5** Improper site preparation and maintenance; or
- 6 Customer induced contamination or leaks.

THE WARANTY SET FORTH IS EXCLUSIVE AND NO OTHER WARRANTY, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Limitation of Remedies and Liability

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL HP BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFITS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

Responsibilities of the Customer

The customer shall provide:

- **1** Access to the products during the specified periods of coverage to perform maintenance.
- **2** Adequate working space around the products for servicing by Hewlett-Packard personnel.
- **3** Access to and use of all information and facilities determined necessary by Hewlett-Packard to service and/or maintain the products. (Insofar as these items may contain proprietary or classified information, the customer shall assume full responsibility for safeguarding and protection from wrongful use.)
- **4** Routine operator maintenance and cleaning as specified in this manual.
- **5** Consumables such as paper, disks, magnetic tapes, ribbons, inks, pens, gases, solvents, lamps, filters, fuses, seals, etc.

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of the manufacturer, Hewlett-Packard Ltd.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013. Hewlett-Packard Company; 3000 Hanover Street; Palo Alto, California 94304.

Statement of Compliance

Electromagnetic Compatibility (EMC) Information	This product has been designed to meet the protection requirements of the European Communities Electromagnetic Compatibility (EMC) directives: EN55011:1991 (Group 1, Class A) EN50082-1:1992 - IEC 1000-4-2 (1995) ESD - IEC 1000-4-3 (1995) Radiated Suseptibility - IEC 1000-4-4 (1995) EFT
	In order to preserve the EMC performance of the product, any cable which becomes worn or damaged must be replaced with the same type and specification.
Safety Information	This instrument has been designed and tested in accordance with publication EN61010-1(1993) / IEC 1010-1(1990) +A1(1992) +A2(1994) / CSA C22.2 No. 1010.1(1993) Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

General Safety

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

WARNINGThis is a Safety Class I instrument (provided with a protective earthing ground,
incorporated in the powercord). The mains plug shall only be inserted in a socket outlet
provided with a protective earth contact. Any interruption of the protective conductor
inside or outside of the instrument is likely to make the instrument dangerous.
Intentional interruption is prohibited.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gasses or fumes.

DO NOT use repaired fuses or short-circuited fuseholders: For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.

DO NOT perform procedures involving cover or shield removal unless you are qualified to do so: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers and shields are for use by service-trained personnel only.

DO NOT service or adjust alone: Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, service personnel must not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure the safety features are maintained.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure the safety features are maintained.

Safety Symbols

The following symbols on the instrument and in the manual indicate precautions which must be taken to maintain safe operation of the instrument.

Safety Symbo	ls
\bigwedge	The Instruction Documentation Symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the supplied documen- tation.
	Indicates the field wiring terminal that must be connected to earth ground before operating the equipment - protects against electrical shock in case of fault.
	Frame or chassis ground terminal - typically connects to the equipment's metal frame.
\sim	Alternating current (AC)
	Direct current (DC)
\bigwedge	Indicates hazardous voltages
WARNING	Warning denotes a hazard. It calls attention to a proce- dure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.
CAUTION	Caution denotes a hazard. It calls attention to a proce- dure which, if not correctly performed or adhered to, could result in damage to or destruction of the instru- ment. Do not proceed beyond a caution note until the indicated conditions are fully understood and met.
CE	The CE mark shows that the product complies with all relevant European Legal Directives.
ISM 1-A	This is a symbol of an Industrial, Scientific, and Medical Group 1 Class A product.
SP ®	The CSA mark is a registered trademark of the Cana- dian Standards Association, and indicates compliance to the standards layed out by them.

Noise Declaration

LpA<70dB

am Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 pt.19 (per ISO 7779)

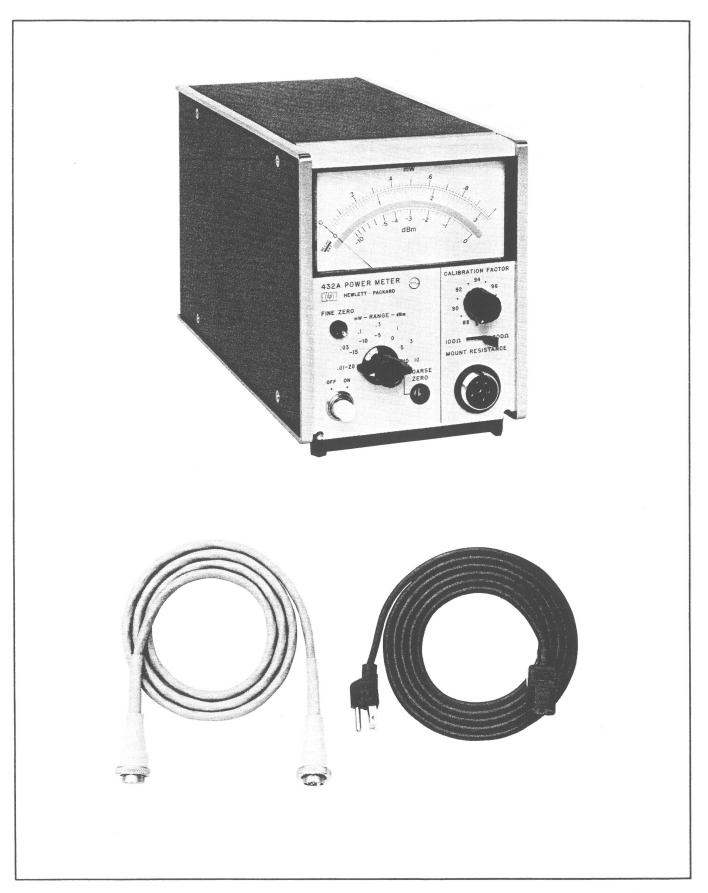


Figure 1-1. HP Model 432A Power Meter

SECTION I

GENERAL INFORMATION

1-1. DESCRIPTION.

1–2. The Hewlett-Packard Model 432A Power Meter, with HP temperature-compensated thermistor mounts, measures RF power from 10 microwatts (-20 dBm) to 10 milliwatts (+10 dBm) full scale with 1% of full scale accuracy from 10 MHz to 40 GHz. With a selector switch, the instrument normalizes the power meter reading to compensate for the Callibration Factor of a thermistor mount used for a given measurement. For portable operation, Option 01 instruments have a rechargeable nickel-cadmium battery. See Table 1–1 for complete specifications.

1–3. The Model 432A has provision for dc substitution measurements and for power meter calibration. An output is provided for recorders or digital voltmeter readout.

1–4. <u>Accessories.</u> Two accessories are supplied with the Model 432A Power Meter: a 7.5-foot (2290 mm) detachable power cable and a 5-foot (1520 mm) cable that connects the thermistor mount to the meter. Thermistor mounts are available but not supplied with the Power Meter (refer to Table 1–2). Table 1–1 lists those accessories supplied and also those available.

1-5. INSTRUMENT IDENTIFICATION.

1–6. Hewlett-Packard instruments are identified by an 8- or 10digit serial number. The first four digits are the Serial Prefix. To properly match a manual with the instrument to which it applies, the prefix on the instrument must be the same as the prefix at the front of the manual. If the numbers are different, information is supplied either on yellow Manual Change Supplements, or in an Appendix in the Manual. If the change information is missing, contact your HP Sales Office (Sales Offices are listed at the back of the Manual).

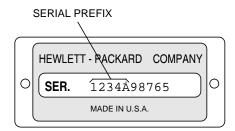


Figure 1-2. Instrument Identification

Table 1-1. Specifications

- Instrument Type: Automatic, self-balancing power meter for use with temperature-compensated thermistor mount.
- Power Range: 7 ranges with full-scale readings of 10, 30, 100, and 300 μ W, 1, 3 and 10 mW; also calibrated in dBm from -20 dBm to +10 dBm full scale in 5-dB steps.

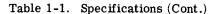
Accuracy: $\pm 1\%$ of full scale on all ranges (+0°C to +55°C).

- Calibration Factor Control: 13-position switch normalizes meter reading to account for thermistor mount Calibration Factor. Range: 100% to 88% in 1% steps.
- Thermistor Mount: External temperature-compensated thermistor mounts required for operation (see Table 1-2).
- Meter: Taut-band suspension, individually computercalibrated, mirror-backed scales. Milliwatt scale more than 4-1/4 inches (108 mm) long.
- Zero Carryover: Less than $\pm 0.5\%$ of full scale when zeroed on most sensitive range.

Fine Zero: Automatic, operated by toggle switch.

Recorder Output: 1.000 volt into open circuit corresponds to full-scale meter deflection (1.0 on 0 - 1 scale) $\pm 0.5\%$; 1000-ohm output impedance, BNC connector.

RFI: Meets all conditions specified in MIL-I-6161D.


Power: 115 or 230 Vac ±10%, 48 to 440 Hz, 13 VA (max). Optional rechargeable battery provides up to 20 hours continuous operation. Automatic battery recharge.

Weight: Net 6-1/2 lb (3 kg).

Weight with Optional Battery Pack: Net 9-1/4 lb (4.2 kg).

Environmental: Operating Temperature: 0 to +55°C. Storage Temperature: -20 to +60°C.

Storage Temperature: -20 to +60°C. Humidity: Up to 95% Relative Humidity at 40°C. EMC: Meets EN55011:1991 (Group 1, Class A), and EN50082-1.

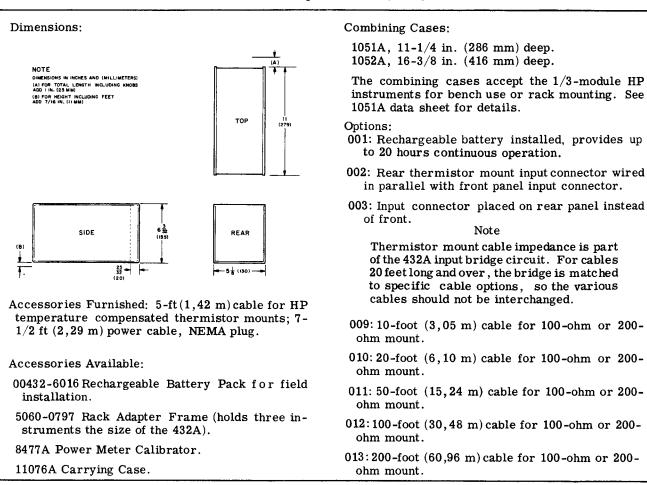


Table 1-2. Thermistor Mounts for the 432A

HP Model	Frequency Range (GHz)	Operating Resistance (Ohms)
COAXIAL MOUNTS:		
478A (Type N Connector)	0.01-10	200
8478B (Type N Connector)	0.01-18	200
8478B-Option 11 (APC-7 Connector)	0.01-18	200
WAVEGUIDE MOUNTS:		
S486A	2.6-3.95	100
G486A	3.95-5.85	100
J486A	5.3-8.2	100
H486A	7.05-10	100
X486A	8.2-12.4	100
M486A	10-15	100
P486A	12.4-18	100
K486A	18-26.5	200
R486A	26.5-40	200

11516A: Circular Flange Adapter for R486A.

1-7. OPERATING ENVIRONMENT.

1–8. This instrument is designed for indoor use only.

1–9. The module may be operated at temperatures from 0°C to 55°C at altitudes of up to 4,600 m (15,000 ft). The module may be operated in environments up to 95% relative humidity to 40°C, but it should be protected from temperature extremes which may cause condensation.

1-10. To ensure adequate cooling do not obstruct air vents in the instrument cabinet.

1–11. <u>COOLING REQUIREMENTS.</u>

1-12. To provide adequate cooling, an air gap of approximately 75 mm should be maintained around the instrument.

- NOTEIf the HP 432A is subject to HP Class B
condensation it is recommended that the
instrument be powered up for at least 30
minutes before normal operation is
possible.
- CAUTION This instrument is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010-1 and 644 respectively.

1–13. <u>CLEANING.</u>

1–14. To clean the module/instrument: Use a soft, clean damp cloth to clean the front panel and side covers.

- CAUTION Mains supply voltage fluctuations should not exceed $\pm 10\%$ of the nominal selected line voltage.
- CAUTIONBefore switching on this instrument, make
sure that the line voltage slide switch is set
to the voltage of the power supply, and the
correct fuse is installed (see Figure 3–3).
Ensure the power supply voltage is in the
specified range.

WARNING Appliance coupler (mains input powercord) is the power disconnect device. Do not position the instrument such that access to the coupler is impaired.

- WARNING For continued protection against fire hazard, replace the line fuse only with the same type and line rating (T100 mA 250 V). The use of other fuses or materials is prohibited.
- WARNING If this instrument is not used as specified, the protection provided by the equipment could be impaired. This instrument must be used in a normal condition only (in which all means for protection are intact).
- WARNINGNo operator serviceable parts inside.
Refer servicing to qualified
personnel. To prevent electrical
shock do not remove covers.

SECTION II

INSTALLATION

WARNING If this instrument is not used as specified, the protection provided by the equipment could be impaired. This instrument must be used in a normal condition only (in which all means for protection are intact).

2-1. INITIAL INSPECTION.

2–2. MECHANICAL CHECK.

2–3. If damage to the shipping carton is evident, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for mechanical damage. Also check the cushioning material for signs of severe stress.

2-4. PERFORMANCE CHECKS.

2–5. The electrical performance of the Model 432A should be verified upon receipt. Performance checks suitable for incoming inspection are given in Section V, Maintenance.

2-6. DAMAGE CLAIMS.

2–7. If the instrument is mechanically damaged in transit, notify the carrier and the nearest Hewlett-Packard field office immediately. A list of field offices is at the back of this manual. Retain the shipping carton and padding material for the carrier's inspection. The field office will arrange for replacement or repair of your instrument without waiting for claim settlements against the carrier.

2–8. Before shipment this instrument was inspected and found free of mechanical and electrical defects. If there is any deficiency, or if electrical performance is not within specifications, notify your nearest Hewlett-Packard Sales and Service Office.

2-9. THREE-CONDUCTOR POWER CABLE.

2–10. To protect operating personnel, the National Electrical Manufacturers Association (NEMA) recommends that the instrument panel and cabinet be grounded. All Hewlett-Packard instruments are equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground wire.

2–11. To preserve the protection feature when operating the instrument from a two-connector outlet, use a three-prong to two-prong adapter and connect the green pigtail on the adapter to ground.

2-12. PRIMARY POWER REQUIREMENTS.

2–13. The Model 432A operates from 115 or 230 volts ac line voltage. Line frequency may vary from 48 to 440 Hz. A slide switch on the rear panel is moved to the correct position for the line voltage available. Before operating the equipment, ensure that the fuse installed in the instrument corresponds to the value marked on the panel for the line voltage available (1/8 amp slo-blow).

2-14. INTERNAL BATTERY OPERATION.

2–15. Model 432A Option 001 instruments contain an internal battery and a battery charging assembly. By connecting the 432A to an ac source, the battery may be charged overnight. The battery can be maintained in the charging state indefinitely without damage. It will assume its full capacity, 1.25 ampere-hours, and will not charge in excess of that. This enables the instrument to operate for approximately 20 hours continuously without recharging.

2-16. BATTERY INSTALLATION.

a. Set power switch to off and remove power plug from rear panel.

b. Remove top and bottom, and side instrument covers.

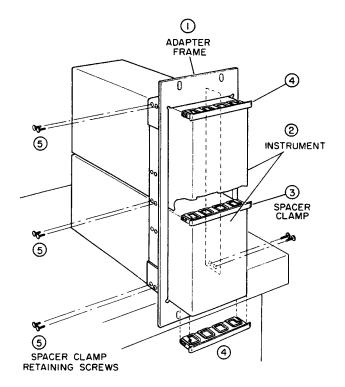
c. The battery is installed with the terminals toward the right hand side of the instrument when faced from the front. The two terminals on the battery fit into spaces provided on the circuit board.

d. Using the retaining nuts, fasten the battery firmly in place. Be careful not to short the battery terminals at any time as this may cause battery cell damage.

e. Install assembly A7, battery charging board, in the space provided for it just ahead of the battery.

f. Reinstall instrument covers and adjust circuit. Instrument is now ready for operation.

2-17. BATTERY STORAGE.


2–18. Store the battery at or below room temperature. Extended storage at high temperature will reduce the cell charge, but will not damage the battery if the storage temperature is below 140° F. Install the battery in the instrument and recharge before using Model 432A in battery operation.

2-19. RACK MOUNTING.

2–20. Model 432A is narrower than full-rack width. It is what is termed a sub-modular unit. When used alone, the instrument can be bench mounted. When used in combination with other sub-modular units it may be bench or rack mounted. The HP 1051A and 1052A Combining Cases and Rack Adapter Frames are designed specifically for this purpose.

2-21. COMBINING CASE.

2–22. A model 1051A Combining Case is shown in Figure 2–1. This case is full rack width and accepts varying combinations of submodular instruments. The case, purchased separately, is provided with a rack mounting kit. The combining case will hold three

Figure 2-1. Sub-module Installation in Rack Adapter Frame

instruments the same size as the Model 432A. When instruments are installed in the combining case, they may be installed or removed individually.

2-23. ADAPTER FRAMES.

2-24. The 5060-0797 Adapter Frame is shown in Figure 2-2. The frame will accept a variety of submodular units in a manner suitable for rack mounting. Submodular units, in combination with any necessary spacers are assembled within the frame. A submodular unit cannot be removed individually.

2-25. REPACKING FOR SHIPMENT.

2-26. When returning an instrument to Hewlett-Packarduse the original packing material. If the original foam type packing material is not available, contact an authorized HP Sales Office for assistance. If this is not possible, first protect the instrument surfaces by wrapping in heavy kraft paper or with sheets of cardboard flat against the instrument. Protect the instrument on all sides using approximately 4" of packing material and pack in a durable container. Mark the container clearly for proper handling and insure adequately before shipping.

2-27. When an instrument is returned to HP for service or repair, attach a tag to the instrument specifying the owner and desired action. All correspondence should identify the instrument by model number and full eight-digit serial number.

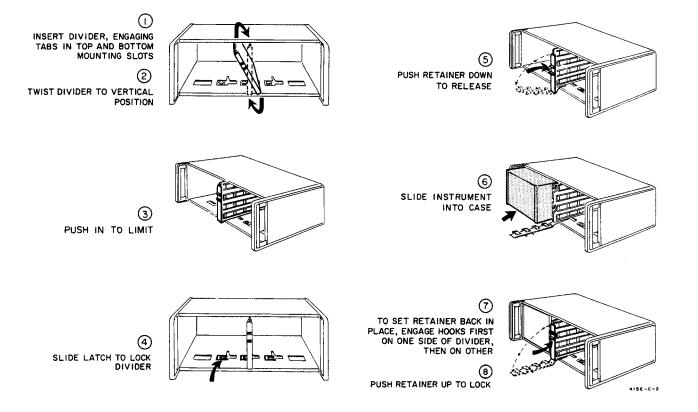


Figure 2-2. HP Model 1051A Combining Case Instrument Installation

SECTION III

OPERATING INFORMATION

3-1. INTRODUCTION.

3-2. The Model 432A Power Meter operates with HP temperature-compensated thermistor mounts such as the 8478B and 478A Coaxial, and 486A Waveguide series. The frequency range of the 432A with these mounts in 50-ohm coaxial systems is 10 MHz to 18 GHz; in waveguide systems it is 2.6 GHz to 40 GHz. Full-scale power ranges are 10 microwatts to 10 milliwatts (-20 dBm to +10 dBm). Extended measurements may be made to 1 microwatt (-30 dBm). The total measurement capacity of the instrument is divided into seven ranges, selected by a front-panel RANGE switch.

3-3. This section describes general operating procedures and error analysis in microwave power measurement. Application Note 64, available on request from Hewlett-Packard, is a detailed analysis of microwave power measurement problems and techniques.

3-4. CONTROLS, CONNECTORS, AND INDICATORS.

3-4. The front and rear panel controls, connectors, and indicators are explained in Figure 3-2. The descriptions are keyed to the corresponding items which are indicated on the figure.

3-6. The COARSE ZERO and FINE ZERO controls zero the meter. Zero carry-over from the most sensitive range to the other six ranges is within $\pm 0.5\%$. When the RANGE switch is set to COARSE ZERO, the meter indicates thermistor bridge unbalance, and the front panel COARSE ZERO adjust is for initial bridge balance. For best results, FINE ZERO the 432A on the particular meter range in use.

3-7. The CALIBRATION FACTOR switch provides discrete amounts of compensation for measurement uncertainties related to SWR and thermistor mount efficiency. The Calibration Factor value permits direct meter reading of the RF Power delivered to an impedance equal to the characteristic impedance (Z_0) of the transmission line between the thermistor mount and the RF source. Calibration Factor values are marked on the label of each 8478B, 478A or 486A Thermistor Mount. For further details, see Paragraph 3-23.

3-8. The MOUNT RESISTANCE switch on the front panel compensates for three types of thermistor mounts. Model 486A waveguide mounts can be used by setting the MOUNT RESISTANCE switch to 100Ω or 200Ω , depending on the thermistor mount used (refer to Table 1-2). The 200Ω position is used with Models 478A and 8478B Thermistor Mounts.

3-9. The rear-panel BNC connected labeled RE-CORDER provides an output voltage linearly proportional to the meter current; 1 volt into an open circuit equals full-scale meter deflection. This voltage is developed across a 1K resistor; therefore, when a recorder with a 1K input impedance is connected to the RECORDER output, approximately .5 volt will equal full scale deflection. This loading of the RE-CORDER output has no effect on the accuracy of the 432A panel meter.

3-10. A digital voltmeter can be connected to the rear panel RECORDER output for more resolution of power meter readings. When a voltmeter with input impedance greater than 1 megohm is connected to the RECORDER output, 1 volt equals full scale deflection.

3-11. The 432A has two calibration jacks (V_{RF} and V_{COMP}) on the rear panel that can be used for precision power measurements. Instrument error can be reduced from $\pm 1\%$ to $\pm (0.2\%$ of reading $\pm 5\mu$ W) of reading, depending on the care taken in measurement and on the accuracy of auxiliary equipment. For further information, see Paragraph 3-27.

3-12. BATTERY OPERATION.

3-13. The Model 432A Option 001 instruments contain tery and conventional 115- or 230-volt line power. A rechargeable Nickel-Cadmium battery is factoryinstalled in Option 01 instruments. The same battery can be ordered and later installed on the basic instrument, thereby modifying the power meter to the Option 01 configuration. The battery installation kit, HP part number 00432-6016 (including battery charging circuit) may be ordered from the nearest HP Sales Office.

3-14. It is recommended that the Model 432A be battery-operated for up to eight hours, and then allowed to recharge eight hours, or overnight. Continuous battery operation is possible for up to about 20 hours, but then the battery must be recharged for about 20 hours.

3-15. The 432A automatically operates on its internal battery whenever the ac line power is disconnected and the POWER switch is ON. When the battery terminal voltage decreases far enough to force the power supply voltage regulator out of regulation, then the meter stops working and the meter indicator points to the red RECHG BAT. To recharge the battery, simply connect the 432A to ac line power, and turn it ON.

3-16. Battery Storage. Storage of the battery at or below room temperature is best. Extended storage at temperatures above room temperature will reduce cell charge, but will not damage the battery; however, the battery should not be stored where the temperature exceeds 60° C (+140°F).

3-17. MICROWAVE POWER MEASUREMENT ACCURACY.

3-18. A number of factors affect the overall accuracy of power measurement. The major sources of error are mismatch error, RF losses, and instrumentation error.

3-19. <u>Mismatch Error</u>. In a practical measurement situation, both the source and thermistor mount have SWR, and the source is seldom matched to the thermistor mount unless a tuner is used. The amount of mismatch loss in any measurement depends on the total SWR present. The impedance that the source sees is determined by the acutal thermistor mount impedance, the electrical length of the line, and the characteristic impedance of the line, Z_0 .

3-20. In general, neither the source nor the thermistor mount has Z_0 impedance, and the actual impedances are known only as reflection coefficients, mismatch losses, or SWR. The power delivered to the thermistor mount - and hence the mismatch loss - can only be described as being somewhere between two limits. The uncertainty of power measurement due to mismatch loss increases with SWR. Limits of mismatch loss are generally determined by means of a chart such as the Mismatch Loss Limits charts in Application Note 64. The total mismatch loss uncertainty in power measurement is determined by algebraically adding the thermistor mount losses to the uncertainty caused by source and thermistor mount Z_0 match.

3-21. <u>RF Losses</u>. RF losses account for the power entering the thermistor mount but not dissipated in the detection thermistor element. Such losses may be in the walls of a waveguide mount, the center conductor of a coaxial mount, capacitor dielectric, poor connections within the mount, or due to radiation.

3-22. Instrumentation Error. The degree of inability of the instrument to measure the substitution power supplied to the thermistor mount is called power meter accuracy or instrumentation error. Instrumentation error of the Model 432A is $\pm 1\%$ of full scale, 0°C to ± 55 °C.

3-23. CALIBRATION FACTOR AND EFFECTIVE EFFICIENCY.

3-24. Calibration factor and effective efficiency are correction factors for improving power measurement accuracy. Both factors are marked on every HP thermistor mount. Calibration factor compensates for thermistor mount VSWR and RF losses whenever the thermistor mount is connected to an RF source without a tuner. Effective efficiency compensates for thermistor mount RF losses when a tuner is used in the measurement system.

3-25. When the 432A CALIBRATION FACTOR selector is set to the appropriate factor indicated on the thermistor mount, the power indicated by the meter is the power that would be delivered by the source to

a load impedance equal to Z_0 . More accurately, the relationship between indicated power and the power available to a Z_0 load is given by the following equation:

$$P_{o} = \frac{P \text{ indicated } (1 \pm \rho_{s} \rho_{m})^{2}}{Calibration Factor}$$

where

 P_0 = power available to a Z_0 load

 $\rho_{\rm s}$ = source reflection coefficient

 $\boldsymbol{\rho}_{\mathrm{m}}$ = thermistor mount reflection coefficient

$$\rho = \frac{\text{SWR} - 1}{\text{SWR} + 1}$$

Calibration factor does not compensate for source VSWR, or for multiple reflections between the source and the thermistor mount.

3-26. To minimize mismatch between the source and the thermistor mount without a tuner, insert a low SWR precision attenuator in the transmission line between the thermistor mount and the source. Since the mount impedance (and corresponding SWR) deviates significantly only at the high and low ends of a microwave band, it is generally unnecessary to use a tuner. A tuner or other effective means of reducing mismatch error is recommended when the source SWR is high or when more accuracy is required. For further details, there is a complete discussion of microwave power measurement with emphasis on modern techniques, accuracy considerations and sources of error available in Application Note 64.

3-27. PRECISION POWER MEASUREMENT.

3-28. GENERAL.

3-29. Using precision instruments and careful procedures, measurement error can be reduced to $\pm 0.2\%$ of reading +0.5 μ W. The technique involves: 1) zeroing the bridge circuits and measuring the bridge amplifier output voltage difference with a digital voltmeter, then 2) connecting RF power to the thermistor mount and then measuring the bridge amplifier output voltage difference again, and 3) calculating the power from the two measurements. Figure 3-1 shows the instrument setup for dc substitution measurement. Use an HP Model 3440A DVM, with a 3443A Plug-in Unit or a digital voltmeter with equivalent accuracy.

3-30. MEASUREMENT PROCEDURE.

a. Connect the DVM to the 432A rear panel $V_{\rm COMp}$ and $V_{\rm RF}$ outputs. Be sure that the digital voltmeter input is isolated from chasses ground.

b. Turn off, or disconnect the RF power from the thermistor mount.

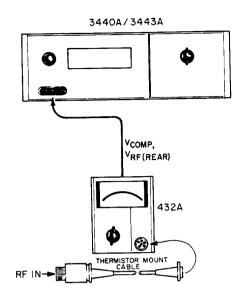


Figure 3-1. Precision Power Measurements

c. Zero the 432A with the COARSE ZERO controls.

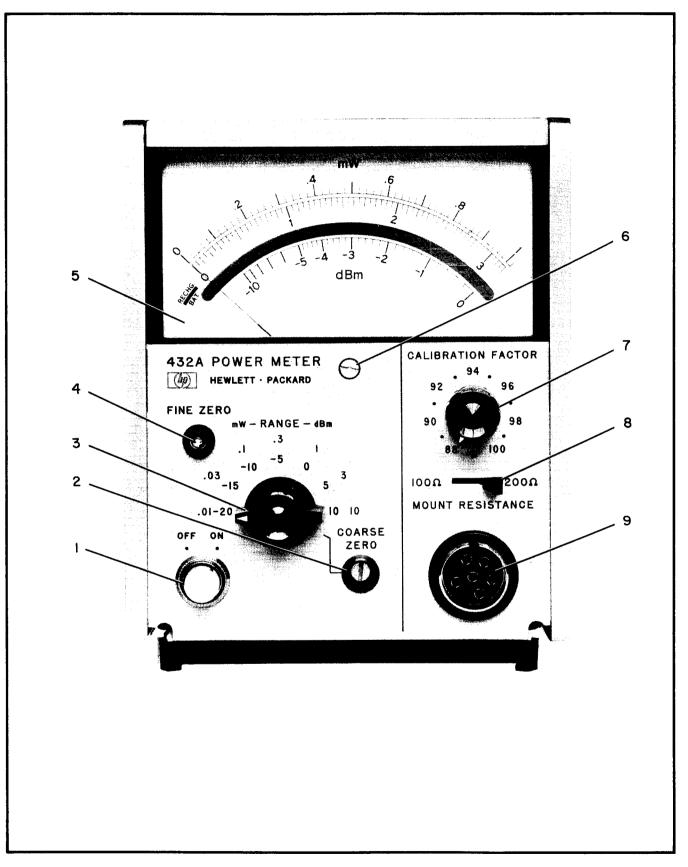
d. Depress the FINE ZERO toggle, and measure the differential voltage (V_0) between V_{comp} and $V_{RF}.$

$$v_0 = v_{COMP} - v_{RF}$$

e. Release the FINE ZERO toggle, and turn on, or reconnect the RF power to the thermistor mount.

f. Measure again the differential voltage (v_1) between $v_{RF}^{}$ and $v_{COMP}^{}.$

$$V_1 = V_{COMP} - V_{RF}$$


g. Measure V_{COMP} to ground.

h. Calculate incident RF power from the equation $\frac{1}{1} = \frac{1}{1} = \frac{1}$

$$P_{RF} = \frac{\frac{1}{4R} \left[2 V_{COMP} \left(V_1 - V_0 \right) + V_0 - V_1 \right]}{EFFECTIVE EFFICIENCY}$$

where

R is the thermistor mount resistance.

1. POWER. Instrument power ON/OFF switch; connects either ac line voltage or internal battery (Option 01 only) to internal voltage regulator circuits. When ac power is on, optional battery charging circuit operates.

- 2. COURSE ZERO. Meter zero adjustment; set the RANGE selector to COURSE ZERO, turn OFF the RF power, and adjust to zero the meter.
- 3. RANGE. Power measurement range selector; selects ranges from 0.01 to 10 milliwatts (-20 to +10 dBm). COURSE ZERO setting is used to zero meter with no power applied to thermistor mount.
- 4. FINE ZERO. Electronic zero that balances the compensation bridge with zero RF input. To zero meter during operation, close the switch momentarily. Be sure that RF power is not applied to the thermistor mount when the FINE ZERO switch is depressed.
- 5. Meter. Indicates power input to thermistor mount in milliwatts and dBm. To use the dBm scale, note the value in dBM of the range in use, and subtract from it the reading on the meter dBm scale.

- 6. Mechanical Meter Zero. Sets meter suspension so that meter indicates zero. To adjust the zero:
 - a. Turn POWER switch off.
 - b. Turn the adjustment screw clockwise until the indicator falls below zero and comes back up to zero again.
 - c. Turn the adjustment very slightly counterclockwise to free up the mechanism from the adjusting peg.
- 7. CALIBRATION FACTOR. Amplifier gain compensation selector. Set to correspond to the calibration factor printed on the thermistor mount body. See paragraph 3–23 for more information.
- 8. MOUNT RESISTANCE. Selects resistance equal to that of mount in use to balance bridges. Table 1–2 lists Hewlett-Packard thermistor mounts and resistances. Set with meter power OFF, when mount is initially connected to the meter.
- 9. Thermistor Mount Cable Connector. Input connector for 5-1/2 foot cable that connects to the 478A, 8478B, or 486A Thermistor Mounts.

NOTE: The photograph opposite is for illustration purposes only.

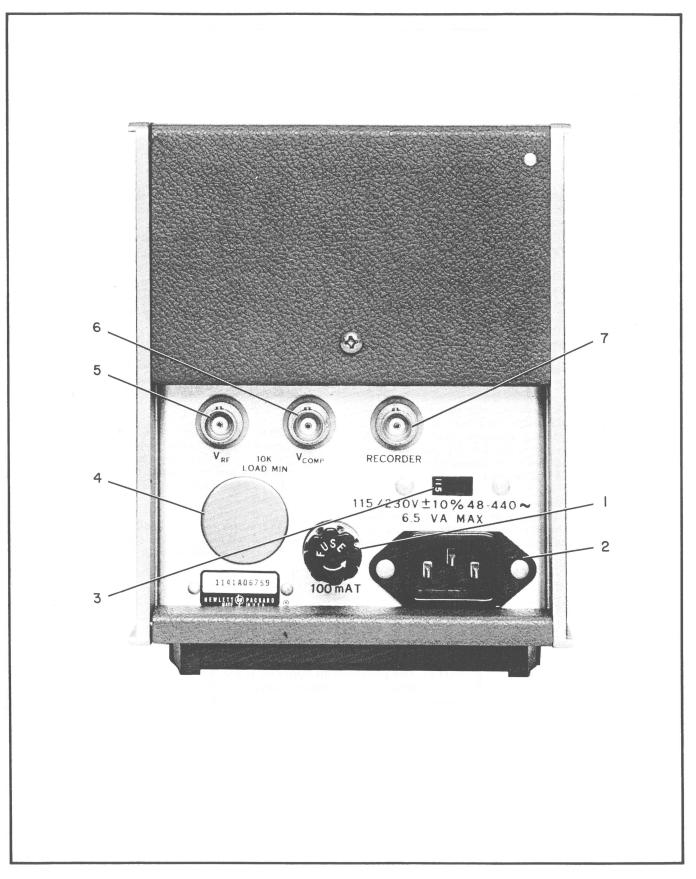


Figure 3-3. Rear Panel Controls and Connectors (Sheet 1 of 2)

1. Line Fuse. For 115 Vac or for 230 Vac use 1/8 amp fuse

- 2. Power Cord Input. Use power cord provided, HP 8120-0078. Line power limits are 115/230 Vac, 48-440 Hz. Check FUSE rating and position of line voltage slide switch before connecting power.
- 3. Line Voltage Slide Switch: Set to line voltage available (115 or 230 Vac, 48-440 Hz).
- 4. Mounting Hole for Option 002 Model Power Meters. Thermistor mount cable connector installed and wired in parallel with front-panel connector. Only one mount at a time may be used with the power meter.

- 5. V_{RF} Input. Connected directly to RF bridge. Used for calibrating power meter with HP 8477A Power Meter Calibrator. Also used for precision power measurements.
- RECORDER OUTPUT. Voltage from meter circuit to be used for recorder or digital voltmeter. Output impedance is approx. 1000Ω.

NOTE: The photograph opposite is for illustration purposes only.

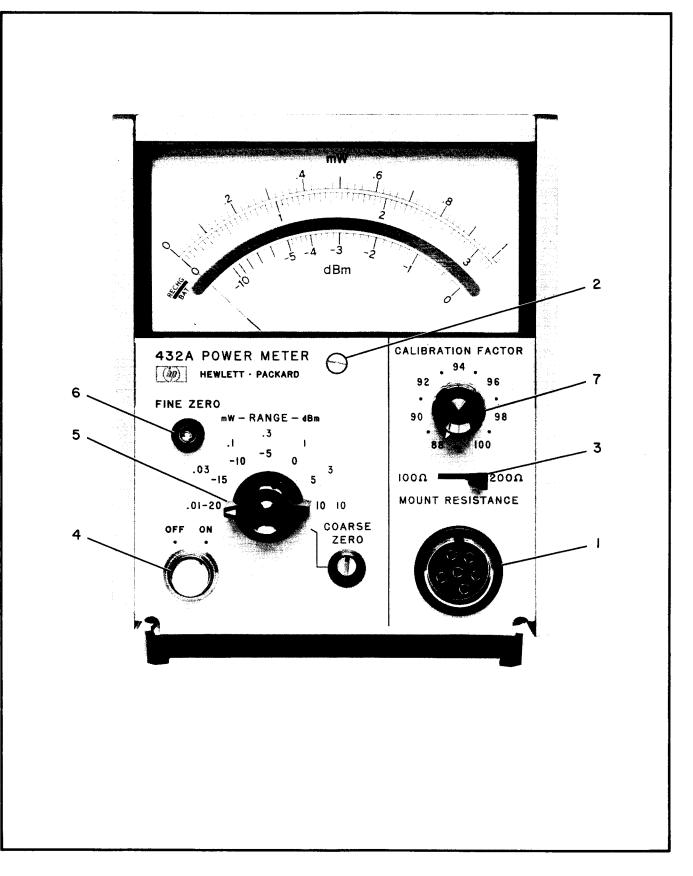


Figure 3-4. Turn On and Zeroing Procedure (Sheet 1 of 2)

1. Connect thermistor mount and cable to THERMISTOR MOUNT connector. Refer to Table 1–2 for recommended thermistor mounts and their frequency ranges.

- 2. Meter Mechanical Zero:
 - a. With the instrument turned off, rotate the meter adjustment screw clockwise until the pointer approaches the zero mark from the left.
 - b. Continue the clockwise rotation until the pointer coincides with the zero mark. If the pointer overshoots, continue rotating the adjustment screw clockwise until the pointer once again approaches the zero mark from the left.
 - c. Rotate the adjustment screw about three degrees counterclockwise to disengage screw adjustment from the meter suspension.
- 3. Set the MOUNT RES switch to correspond to the operating resistance of thermistor mount used.
- 4. Turn the 432A POWER switch ON. For battery operation, the AC LINE indicator does not turn on.

5. Set RANGE selector to COURSE ZERO and then zero the meter with the COURSE ZERO screwdriver adjustment.

Note

The power meter should be zeroed with the RF power source turned off, or the mount disconnected from the source.

6. Set the range selector to the 0.01 mW range; then depress the FINE ZERO switch until the meter indicates zero.

Note

Range-to-range zero carryover is less than $\pm 0.5\%$ if the meter zero has been adjusted (step 2 above), and the instrument has been properly zero-set on the sensitive range. For maximum accuracy, zero-set the power meter on the range to be used.

- 7. Set CALIB FACTOR switch to correspond to Calibration Factor imprinted on HP thermistor mount label.
- 8. Apply RF power to the thermistor mount. Power is indicated on the meter directly in mW or dBm.

NOTE: The photograph opposite is for illustration purposes only.

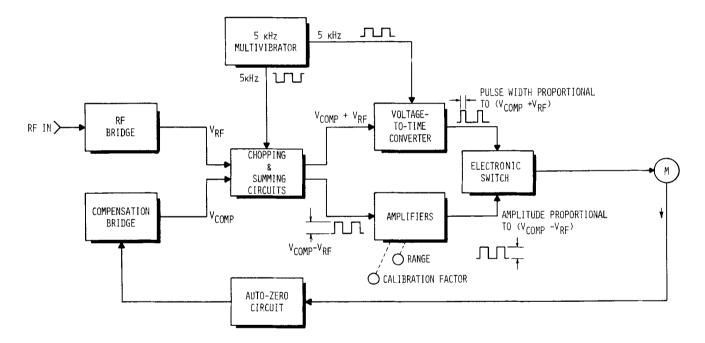


Figure 4-1. Simplified 432A Block Diagram

SECTION IV PRINCIPLES OF OPERATION

4-1. SIMPLIFIED DESCRIPTION

4-2. The HP 432A Power Meter consists of two major sections: the bridge and meter logic assemblies. The instrument also contains an auto zero circuit which provides for automatic zeroing on any range. A simplified block diagram of the HP 432A is shown in Figure 4-1.

4-3. The bridge section contains circuits which form two self - balancing bridge circuits when a suitable thermistor mount is connected to the 432A. Each bridge is automatically brought to bal ance by the action of a high gain dc amplifier feeding power to the top of the bridge. The voltage at the top of the RF bridge, VRF is responsive to both input RF power and ambient temperature changes. The voltage at the top of the compensation bridge, VCOMP is responsive only to ambient temperature changes. Knowing VRF and VCOMP, the RF power can be calculated.

4-4. The meter logic section processes VRF and V_{COMP} to produce a meter current proportional to RF power. The sum (V_{RF} + V_{COMP}) controls the width of 5 kHz pulses. The difference (V_{COMP} - V_{RF}) is chopped, amplified and fed to an electronic switch actuated by the controlled width pulses. Therefore, the meter current is pulses of variable height and width with the meter indicating the average current. (This process produces a meter current proportional to (V_{RF} + V_{COMP}) (V_{RF} - V_{COMP}). Paragraph 4-10 explains why this is necessary.

4-5. FUNCTIONAL BLOCK DIAGRAM

4-6. A functional block diagram of the 432A power meter is shown in Figure 4-2. The instrument comprises two major assemblies: bridge assembly A1 and meter logic assembly A2. Auto zero circuit A1A1, which provides for automatic zeroing of the instrument, is included as part of logic assembly A1.

4-7. The thermistor bridges are biased with direct current from the bridge amplifiers. Each bridge amplifier supplies enough heating current to bring the thermistor resistance to 100 or 200 ohms, depending upon the setting of the MOUNT RESISTANCE switch on the 432A. If one of the thermistor bridges is unbalanced due to incorrect thermistor resistance, an error voltage occurs and is amplified by the bridge amplifier. The error voltage is applied to the top of the bridge and changes the power dissipation of the negative temperature coefficient thermistor. The change of power dissipation causes the resistance to the thermistor to change in the direction required to balance the bridge. Application of RF power to the RF bridge heats the thermistor and lowers its resistance. The bridge circuit responds by reducing the dc voltage applied to the top of the bridge thus maintaining bridge balance.

4-8. If ambient temperature causes changes in the thermistor resistance, the bridge circuits respond by applying an error voltage to the bridges to maintain bridge balance. The voltage at the top of the RF bridge is dependent upon both ambient temperature and the RF input. The voltage at the top of the compensation bridge is dependent upon the ambient temperature only. The power meter reading is brought to zero with no applied RF power by making VCOMP equal to VRF so (VCOMP - VRF) equals zero. Since ambient temperature causes both thermistors to respond similarly, there will be no net difference between the amplifier output voltages. Therefore, any difference in output voltages from the bridges is now due to RF power absorbed by the thermistor mount.

4-9. The RF bridge voltage, V_{RF} , and the compensation bridge voltage, V_{COMP} , contain the "RF power" information. To provide a meter reading proportional to RF power the dc voltages (V_{RF} , V_{COMP}) must be further processed by the meter logic circuits.

4-10. The required processing is derived as follows: P_0 is absorbed power needed by the RF thermistor to bring its resistance to R ohms (100 or 200 ohms). P_0 consists of two components: RF power and dc power supplied by the 432A. The self-balancing action of the bridge circuit automatically adjusts the dc power so that the total power in the thermistor is P_0 . This dc power is related to the voltage VRF at the top of the bridge by $(V_{\rm RF}/2)^2/R$. Thus

$$P_0 = RF power + DC power$$

= RF power + $\frac{V_{RF}^2}{4R}$

4-11. RF power can be determined by measuring VRF with and without applied RF power and then doing some arithmetic. But this power measuring scheme is neither convenient nor temperature compensated (since P_0 changes with temperature). The 432A introduces another thermistor bridge circuit exposed to the same ambient temperature but not RF power. This circuit includes adjustments (COARSE and FINE ZERO) so that the dc voltage VCOMP at the top of its bridge can be set equal to VRF. Assuming matched RF and compensation thermisnes, VRF0 (with no RF power) and VCOMP remain equal with ambient temperature fluctuation. They differ only when the RF power to be measured is applied to the RF thermistor. Thus, we have

$$V_{\text{COMP}} = V_{\text{RF}_0}$$
 when RF power = 0

and

$$P_0 = 0 + \frac{V_{COMP2}}{4R}$$

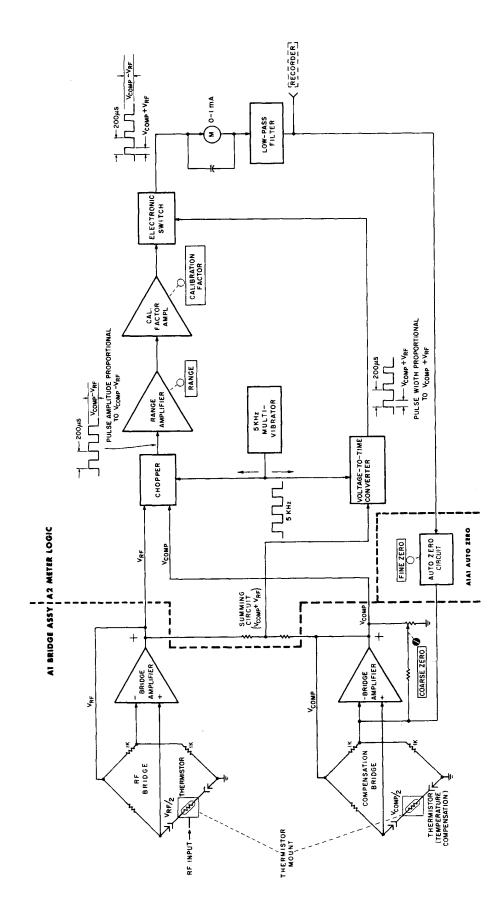
Combining equations, we have:

$$\frac{V_{COMP2}}{4R} = RF power + \frac{V_{RF2}}{4R}$$

or

RF power =
$$\frac{\mathbf{v}_{\text{COMP}^2} - \mathbf{v}_{\text{RF}^2}}{4R}$$
$$= \frac{1}{4R} \left(\mathbf{v}_{\text{COMP}} + \mathbf{v}_{\text{RF}} \right) \left(\mathbf{v}_{\text{COMP}} - \mathbf{v}_{\text{RF}} \right)$$

4-12. Thus an RF power measurement reduces to setting VCOMP = VRF0 (with zero RF power) initially, measuring VCOMP and VRF, and computing with the above formula. The 432A carries out the computation by forming the indicated sum and difference, performing the multiplication and displaying the result on a meter.

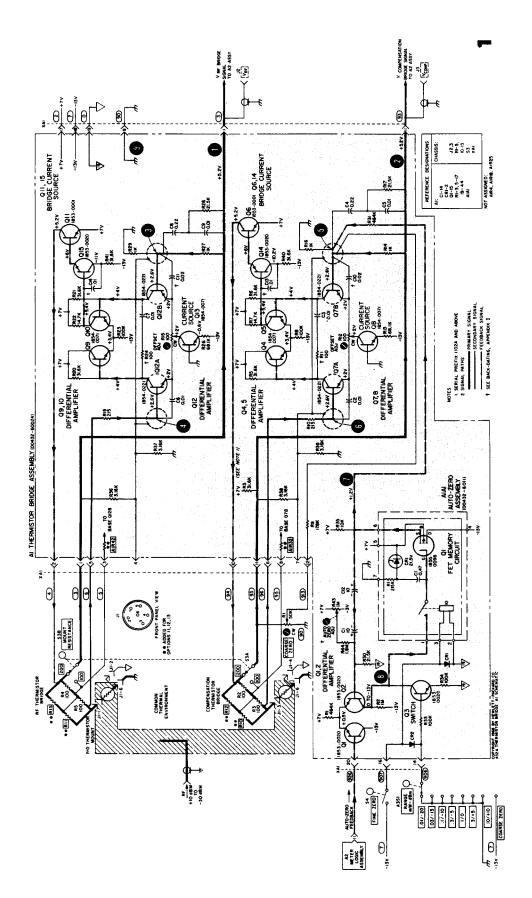
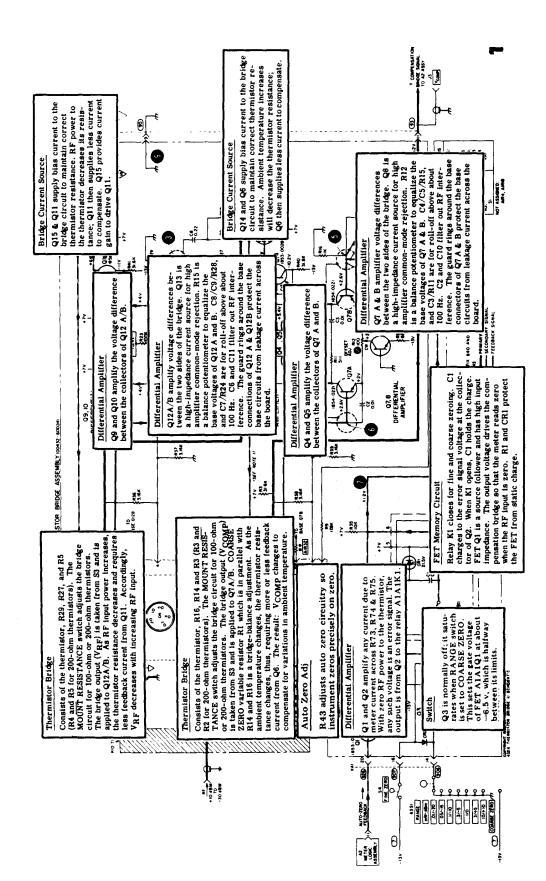
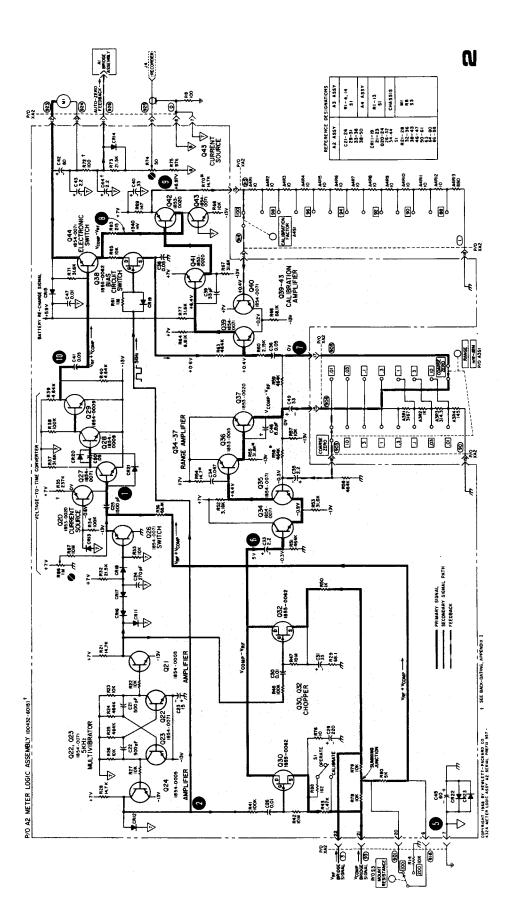
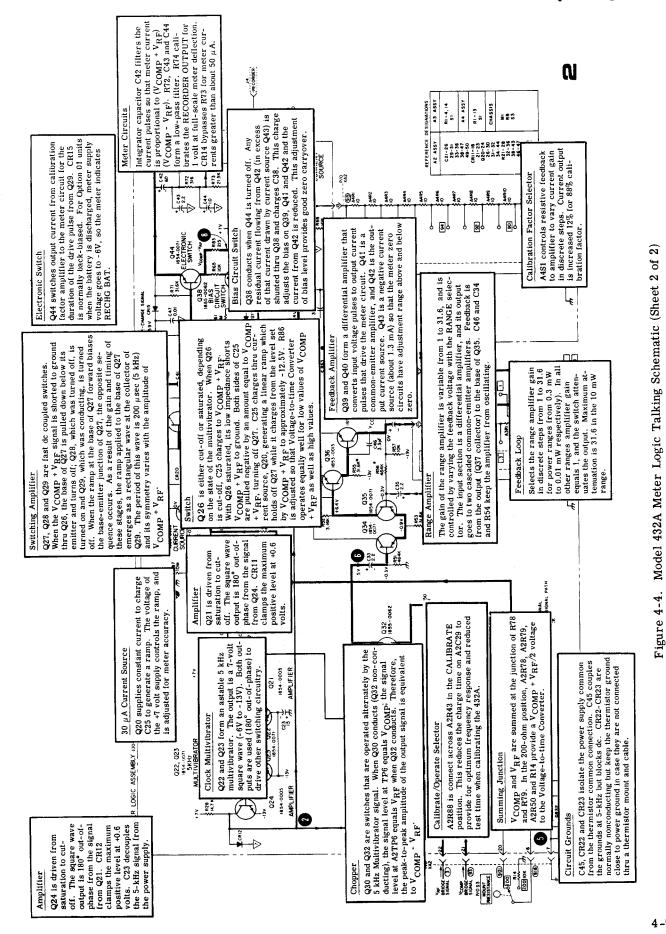

4-13. The meter logic circuits change the two dc voltages to two pulse signals which contain all the RF power information. One of the signals will be a square wave whose amplitude is proportional to VCOMP - VRF. The other signal will have a pulse width proportional to V_{COMP} + VRF.

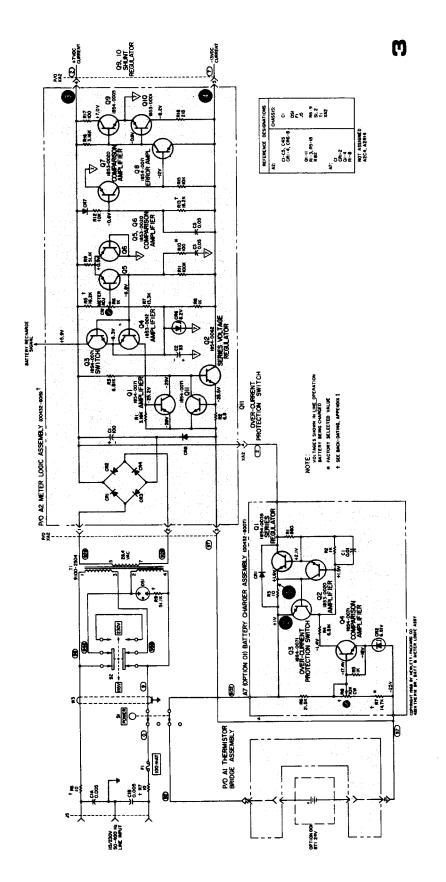
4-14. The VCOMP - V_{RF} signal is obtained by taking the dc voltage outputs from the A1 assembly and applying them to a chopper circuit. This chopper circuit is driven by a 5-kHz multivibrator. The output of the chopper is a square wave signal whose amplitude is proportional to VCOMP - VRF. The output of the chopper is coupled to the range amplifier and then to the calibration factor amplifier. The amplification that the signal receives in these two amplifiers depends upon the setting of the RANGE switch and the CALIBRATION FACTOR switch. The output of the calibration factor amplifier is V. This current is fed to the electronic switch. A square wave current with amplitude proportional to (VCOMP - VRF). 4-15. The VCOMP + VRF signal is obtained by taking the two dc voltages from A1 assembly through a summing circuit and feeding this voltage to a voltageto-time converter. The voltage-to-time converter is driven by a 5-kHz multivibrator. The output of the voltage - to - time converter is a signal whose pulse width is proportional to the sum of VCOMP + VRF. This signal controls the electronic switch. From the VCOMP - VRF and VCOMP + VRF inputs, the electronic switch provides a 5-kHz pulse train whose amplitude is proportional to VCOMP - VRF and whose pulse width is proportional to VCOMP + VRF. The pulse width is always 90 msec or less.

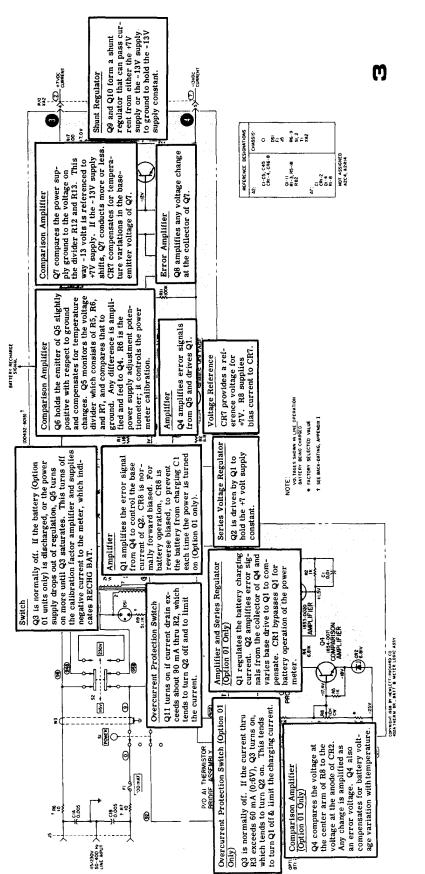
4-16. The bias circuit switch and filter provides a zero current reference for the meter circuits. This is accomplished by controlling the dc bias to the first stage of the calibration factor amplifier. This circuit, in effect, restores the dc component to the square wave which has been amplified by ac coupled amplifiers.

4-17. The meter is a 0-1 mA, full-scale meter that has a capacitor across its terminals. The capacitor integrates the output pulses from the current switch so the current into the meter is proportional to the time average of the input pulses. That is, the input current to the meter is proportional to the product of

4-18. The output from the meter is further filtered so the voltage at the rear panel RECORDER output is suitable for use with either a digital voltmeter or X-Y recorder. The RECORDER output voltage is returned to the compensation bridge through the automatic zero circuit when the FINE ZERO switch is depressed. The automatic zero circuit holds a correction voltage at the input of the compensation bridge amplifier, so when the RF is zero, the meter indication will also be zero.


Figure 4-3. Model 432A RF Bridge Talking Schematic (Sheet 1 of 2)



4-7

Instrument Type	Critical Specifications	Recommended Model
Power Meter Calibrator	Range: 0.1 to 10 mW Accuracy: .1 to 10 mW ranges: 0.2% .01 and .03 mW ranges: 0.5%	HP 8477A
DC Digital Voltmeter	Range: 0.5 to 50 volts dc Accuracy: ±0.05% Input Impedance: 10 megohms, floating Resolution: 4 digits	HP 3440A with 3443A Plug-in Unit
Storage Oscilloscope	Variable Persistence Display Bandwidth: dc to 5 MHz Input Impedance: 1 megohm Sensitivity: 5 mV/division	HP 141A with 1405A and 1420A Plug-in Units
Vertical Plug-in	Bandwidth: 400 kHz Input Impedance: 1 megohm Sensitivity: 1 mV/division	HP 1401A
Cable Assembly (2 required)	RG 58C/U coaxial cable with 2 each BNC male connectors	HP 10503A
Test Lead	Insulated cable terminated with dual banana plug and test clips	HP 11001A
Cable Assembly	Shielded cable with one each BNC and dual banana plug connectors	HP 11000A
Thermistor Mount	Operating Resistance: 100 ohm or 200 ohms	HP 478, 8478
Filter Network		See Figure 5-2
Oscilloscope Probes (2)	Division Ratio: $10:1 \pm 2\%$ Bandwidth: dc to 30 MHz Rise Time: 5 nsec	HP 10001A
Differential Voltmeter	Accuracy: $\pm 0.005\%$ of reading +0.0004% of range $\pm 1 \mu V$	HP 740B
Resistor (2)	10K 1%, 1/8 watt	0757-0442

Table 5-1. Recommended Test Equipment

SECTION V

MAINTENANCE

5-1. INTRODUCTION.

5-2. This section provides information for performance testing, adjusting, troubleshooting and repairing the 432A Power Meter. Performance tests allow the instrument to be checked for conformance to specifications. If performance is not within specifications, adjust or troubleshoot the instrument.

5-3. CONTENT.

5-4. PERFORMANCE TESTS.

5-5. The procedures test power meter performance for incoming inspection, periodic evaluation, calibration and troubleshooting. Specifications in Table 1-1 are the performance standards. If the power meter fails to meet any of the performance test specifications, refer to the troubleshooting diagrams.

5-6. ADJUSTMENTS.

5-7. Procedures describe the adjustments necessary to calibrate the power meter. Adjust the power meter only when it is determined that the meter is out of adjustment and not malfunctioning due to a circuit failure.

5-8. To avoid errors due to possible ground loop currents, isolate the power meter from ground used for other auxiliary equipment. A power plug adapter that removes the ground connection at the line outlet can be used to isolate the power meter.

5-9. Several circuit components are factory-selected to meet specific circuit requirements. The factory selected parts are indicated on the schematic diagrams.

5-10. TEST EQUIPMENT.

5-11. Instruments and accessories required for adjusting and testing the power meter are listed and briefly described in Table 5-1. Instruments used to maintain the instrument must meet or exceed the specifications given.

5-12. SERVICE INFORMATION.

5-13. Service information in the form of troubleshooting, waveforms, schematics and component locations are given in Section VII. Also, an overall system block diagram is included which contains keyed numbers corresponding to the test points.

5-14. 432A PERFORMANCE TESTS WITH 8477A CALIBRATOR

5-15. INITIAL SET-UP.

a. Connect the 8477A outputs to the 432A inputs as shown in Figure 5-1. Use appropriate test equipment as listed in Table 5-1.

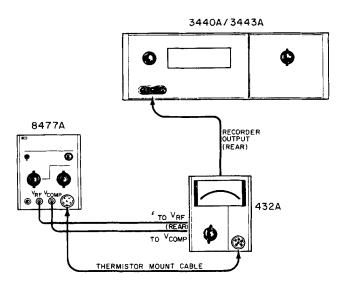


Figure 5-1. Check and Adjustment Test Set-Up

b. If necessary, mechanically zero the meter movement as follows:

- (1) With instrument turned off, rotate meter adjustment screw clockwise until pointer approaches zero mark from the left.
- (2) Continue rotating clockwise until pointer coincides with zero mark. If pointer overshoots, continue rotating adjustment screw clockwise until pointer once again approaches zero mark from the left.
- (3) Relate adjustment screw about three degrees counterclockwise to disengage screw adjustment from meter suspension.

5-16. METER ACCURACY TEST.

a. Set the 8477A Calibrator controls as follows:

POWER (MW)												0.	01 mW
FUNCTION					•								200Ω
ZERO/TEST .			•								•		ZERO

b. Set the 432A controls as follows:
A2S1 (on Meter Logic Assy) CALIBRATE
MOUNT RESISTANCE
RANGE 0.1 mW
POWER ON
CALIBRATION FACTOR $\dots \dots \dots$

c. Adjust 8477A ZERO knob for 0 volts ± 2 mV indication on the DVM.

Section V Maintenance

Table 5-2. Meter Accuracy Test

432A Range (mW)	8477A Range (mW)	Digital Voltmeter Indication (milli- volts ±10 mV)	Indication (Full scale $\pm 1/2$ Div.)
. 01	. 01	1000	1
. 03	. 03	948.8	3
.1	. 1	1000	1
. 3	. 3	948.8	3
1	1	1000	1
3	3	948.8	3
10	10	1000	1

d. Set the 8477A controls as follows:

	0.01 mW
ZERO/TEST	TEST

e. The digital voltmeter should indicate 1000 ± 10 millivolts.

f. The 432A meter should indicate full scale $\pm 1/2$ division.

g. Repeat steps d through f for each of the other ranges. Set the power meter range selector to the position indicated in Column 1 of Table 5-2 and set the 8477A meter reading selector to the corresponding position indicated in Column 2 of Table 5-2. In each case, the meter indications should correspond to those shown in Table 5-2, Columns 3 and 4.

5-17. CALIBRATION FACTOR TEST.

a. Set 432A controls as follows:

A2S1 (on Meter Logic A	sy)CALIBR	ATE
RANGE	0.1	mW
CAL FACTOR		88%
MOUNT RESISTANCE		

b. Set 8477A controls as follows:

FUNCTION										200Ω
ZERO/TEST Switch										
POWER (mW)	•		•	•					0	.1 mW

c. Set 8477A ZERO control so that the digital voltmeter reads 1000 ± 2 mV.

d. Set the calibration factor selector to 89%.

e. The digital voltmeter should indicate 989 ± 10 millivolts.

f. Repeat steps d and e for each position of the CALIBRATION FACTOR selector. In each case, the digital voltmeter should indicate the voltage shown in the second column of Table 5-3 for the CALIBRATION FACTOR shown in the first column.

Model 4	32A
---------	-----

Calibration Factor Selector Setting (%)	Digital Voltmeter Indication (mV)
88	1000 ±2
89	989 ±10
90	978 ±10
91	967 ±10
92	957 ±10
93	946 ±10
94	935 ±10
95	926 ±10
96	916 ±10
97	907 ±10
98	897 ±10
99	889 ±10
100	880 ±10

Table 5-3. Calibration Factor Test

5-18. METER LINEARITY CHECK.

a. Set the 8477A POWER (MW) selector to 1 mW and FUNCTION to 200Ω , ZERO/TEST switch to TEST.

b. Set the 432A RANGE selector to 3 mW, MOUNT RESISTANCE to 200Ω .

c. The 432A meter should indicate 1 mW $\pm 1/2$ division.

d. Set the 8477A POWER (MW) selector to 2 mW.

e. The 432A meter should indicate 2 mW $\pm 1/2$ division.

f. Set the 8477A POWER (MW) selector to 3 mW.

g. The 432A meter should indicate 3 mW $\pm 1/2$ division.

h. Set A2S1 to OPERATE.

5-19. ZERO CARRYOVER TEST.

a. Disconnect the 432A from the 8477A.

b. Turn the 432A power OFF and connect the thermistor mount cable to a thermistor mount.

c. Set the 432A Power Meter MOUNT RESISTANCE selector to the resistance shown on the thermistor mount.

d. Turn ON the 432A power.

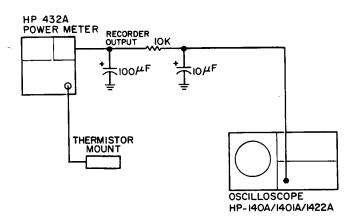


Figure 5-2. Zero Carryover Test Setup

e. Connect 141A through filtering network to rear of 432A as shown in Figure 5-2. Set 141A controls as follows:

INPUT DC SENSITIVITY 1 mV/cm SWEEP TIME 2 sec/cm TRIGGER LEVEL max clockwise (free run)

- f. Zero the 432A as follows:
 - (1) Set the RANGE selector maximum cw to COARSE ZERO.
 - (2) Set the COARSE ZERO screwdriver adjust so that the meter indicates zero.
 - (3) Set 432A RANGE switch to .01 mW. Depress the FINE ZERO switch. The meter indication should go to zero without overshoot.

g. Rotate the RANGE switch clockwise, one step at a time, while the oscilloscope is sweeping. On each 432A range, the scope trace should be within .01 mW division (± 5 mW) from where it was on the .01 mW range.

5-20. FINE ZERO RANGE CHECK.

a. Set the 432A RANGE selector to 0.3 mW. Leave the thermistor mount connected to the cable and the MOUNT RESISTANCE selector set to correspond to the resistance of the mount used.

b. Depress the FINE ZERO switch.

c. Slowly turn the COARSE ZERO screwdriver adjustment counterclockwise until the meter will no longer zero. The FINE zero circuit is at one end of its range.

d. Release FINE ZERO.

e. Set the COARSE ZERO screwdriver adjustment so that the meter indicates full scale on the 0-3 scale (0.3 mW range).

f. Depress FINE ZERO switch (the fine zero circuit is at the other end of its range). Meter should indicate below 2 on the 0-3 scale. Record the indication.

g. Release FINE ZERO.

h. Rotate RANGE switch to COARSE ZERO position. The fine zero circuit is now in the center of its range. The meter reading should be $1.5 \pm 1/2$ reading of step f, ± 0.1 div. on the 0-3 scale.

5-21. <u>432A CALIBRATION WITHOUT 8477A CALIBRATOR.</u>

5-22. The 432A Power Meter can be calibrated without an 8477A Calibrator using a method similar to the precision power method outlined in Paragraph 3-27.

5-23. A major difference between the two measurements is that external power need not be applied when calibrating the instrument. Normally, in a stable environment, the V_{COMP} output voltage remains constant, not being affected by external RF power; only the V_{RF} output varies during power measurement. Since the power that the meter indicates is proportional to V_{COMP} and V_{RF}, we can cause the meter to indicate a power also by holding V_{RF} constant and varying V_{COMP}. This is easily done on the 432A by turning the COARSE ZERO control. Two calibration procedures are given below. Full scale readings are not possible on the 10 mW RANGE. Full scale reading on the mount characteristics.

5-24. CALIBRATION PROCEDURE 1.

a. Connect thermistor mount to power meter; let instrument warm up for at least ten minutes.

b. Select range which instrument is to be calibrated on.

Note

Ranges below 0.3 mW require a precise differential voltmeter capable of resolving 1 μ V. The HP 740B DC Standard/ Δ Voltmeter, which has an accuracy of $\pm (0.005\%)$ of reading $\pm 0.0004\%$ of range $\pm 1 \mu$ V) is recommended. A digital voltmeter is adequate for the 1.0 mW and higher ranges.

c. Connect Differential Voltmeter (or DVM differentially) between the VCOMP and VRF output jacks on the rear panel. See Figure 3-3 for location of VRF and V_{COMP} outputs.

d. While pressing the FINE ZERO switch, measure and record V_0 . (V_0 is the difference of the bridge voltages with no power applied.)

e. Turn COARSE ZERO control (on front panel) clockwise to a convenient power, e.g., 9 on the 0 to 10 scale or 2 on the 0 to 3 scale.

f. Differentially measure and record V_1 . V_1 is the difference voltage between VCOMP and V_{RF} with power applied.

NOTES

INSTRUMENT SERIAL NO.

DATE _____

TABLE 5-4. PERFORMANCE TEST CARD

Data in this test card corresponds to Performance Tests in Paragraphs 5-16 through 5-20.

TABLE 5	-4. P	ERFOR	MANCE	TEST	CARD
---------	-------	-------	-------	------	------

Para. Ref.	Test		Measurement Unit	Min.	Actual	Max.
5-16	METER ACCURACY					
e	0.01 mW applied; measure RECORD	ER OUT voltage	mVdc	990		1010
f	Meter indicates full-scale (0-1 sca	le)	divisions	-1/2		+1/2
	Repeat on remaining 432A power ra	anges:				
е	Power applied: 0.03 mW		mVdc	938.8		958.8
f	Meter indication (0-3 scale)		divisions	-1/2		+1/2
е	Power applied: 0.1 mW		mVdc	990		1010
f	Meter indication $(0-1 \text{ scale})$		divisions	-1/2		+1/2
е	Power applied: 0.3 mW		mVdc	938.8		958.8
f	Meter indication $(0-3 \text{ scale})$		divisions	-1/2		+1/2
е	Power applied: 1 mW		mVdc	990		1010
f	Meter indication (0-1 scale)		divisions	-1/2		+1/2
е	Power applied: 3 mW		mVdc	938.8		958.8
f	Meter indication (0-3 scale)		divisions	-1/2		+1/2
e	Power applied: 10 mW		mVdc	990		1010
f	Meter indication (0-1 scale)		divisions	-1/2	<u></u>	+1/2
5-17 i		teading (mVdc)	mVdc	990		1010
		1000				
	89	989	mVdc	979	<u></u>	999
	90	978	mVdc	968		988
	91	967	mVdc	957		977
	92	957	mVdc	947		967
	93	946	mVdc	936		956
	94	935	mVdc	925		945
	95	926	mVdc	916		936
	96	916	mVdc	906		926
	97	907	mVdc	897		917
	98	897	mVdc	887	<u> </u>	907
	99	889	mVdc	879		899
	100	880	mVdc	870		890

Para. Ref.	Test		Measurement Unit	Min.	Actual	Max.
5-18	METER LINEARITY					
с	1 mW applied, 3 m	W scale: meter indicates 1 mW	divisions	-1/2		+1/2
е	2 mW applied, 3 m	W scale: meter indicates 2 mW	divisions	-1/2		+1/2
g	3 mW applied, 3 m	W scale: meter indicates 3 mW	divisions	-1/2		+1/2
5-19	ZERO CARRY-OVE	<u>t</u>				
d	Zero carry-over:					
	Range (mW)	Scope Indication				
	. 01	$0 \pm 5 mVdc$	mVdc	-5		+5
	. 03	0 ±5 mVdc	mVdc	-5		+5
	.1	$0 \pm 5 mVdc$	mVdc	-5		+5
	. 3	$0 \pm 5 mVdc$	mVdc	-5		+5
	1	$0 \pm 5 mVdc$	mVdc	-5		+5
	3	$0 \pm 5 mVdc$	mVdc	-5		+5
	10	0 ±5 mVdc	mVdc	-5		+5
5-20	FINE ZERO RANGE			1.05		0.0
f	Meter indication o	n 0-3 scale:	divisions	1.75		2.0
g	Meter indication o	n 0-3 scale: 1.5 + 1/2 reading of step f, ±0.1 div.	divisions	0.1		0.1

TABLE 5-4. PERFORMANCE TEST CARD

NOTES

g. Measure and record V_{COMP}. Note that the V_{COMP} jack is isolated from chassis ground; measure from the center conductor of the BNC to the outer conductor.

h. Calculate the power using the following formula*:

$$\mathbf{P} = \frac{1}{4R} \left[2 V_{\text{COMP}} \left(V_1 - V_0 \right) - V_1^{+2} \right]$$
(1)

where R is the resistance of the thermistor mount and should be identical to the setting of the MOUNT RESISTANCE switch.

i. If calculated power is different from the value that was set with the COARSE ZERO control, adjust A2R6 so that the meter reads calculated power. If the range of A2R6 is insufficient to set new power, it will be necessary to change the value of A2R70.

j. Set COARSE ZERO so that meter reads 1 on the 0 to 1 scale. Set A2R72 for $1.000V \pm 10$ mV at the RECORDER output jack on the rear panel.

5-25. There is a simpler form of the equation that was used to calculate power in step h above. This form ignores V0, the small voltage difference between the two bridges with no power applied. However, V0 becomes negligible on the higher ranges, that is, 1 mV and above, and can be ignored with little decrease in accuracy. The simpler form is as follows:

$$\mathbf{P} = \frac{1}{4\mathbf{R}} \left(\mathbf{V}_{\mathbf{C}} - \mathbf{V}_{\mathbf{RF}} \right) \left(\mathbf{V}_{\mathbf{C}} + \mathbf{V}_{\mathbf{RF}} \right)$$
(2)

5-26. CALIBRATION PROCEDURE 2.

a. Connect thermistor mount to power meter; let instrument warm up for at least ten minutes.

b. Select 1, 3 or 10 mW range.

c. Turn the COARSE ZERO control clockwise to indicate some convenient on-scale reading.

d. Measure $V_{\mbox{COMP}}$ and record. Note that $V_{\mbox{COMP}}$ jack is isolated from chassis ground; measure from the center conductor of the BNC to the outer conductor.

e. Measure V_{RF} and record. Follow measurement procedure in step d.

f. Measure and record $V_{COMP} - V_{RF}$. This term must be measured differentially, that is, one side of the DVM connected to V_{COMP} and the other side connected to V_{RF} . In this way the full resolution of the DVM can be used.

g. Substituting the measured values into the above formula, calculate the power.

h. If calculated power is different from the power set with the COARSE ZERO control, adjust A2R6 so that meter indicates that power. If the range of A2R6 is not great enough to set new power level, the value of A2R70 will have to be changed.

i. Adjust COARSE ZERO so that meter reads 1 on the 0 to 1 scale. Set A2R72 for $1.000V \pm 10$ mV at the RECORDER output jack on the rear panel.

5-27. COVER REMOVAL AND REPLACEMENT.

5-28. The side covers can be removed and replaced independently of the top and bottom covers. Each side cover is held in place by four screws retained by nuts which are fastened to the side frames.

5-29. TOP COVER REMOVAL.

a. At the rear of the instrument, remove the screw that retains the cover.

b. Grasp the cover from the rear, and slide it back 1/2 inch. Then tilt forward edge of the cover upward and lift the cover from the instrument.

5-30. TOP COVER REPLACEMENT.

a. Rest the cover flat on the cast guides projecting inward near the top of each side frame.

b. Slide the cover forward, allowing its forward edge to enter the groove in the front panel.

c. Replace the cover retaining screw.

5-31. BOTTOM COVER REMOVAL.

a. Remove the retaining screw at the rear of the cover.

b. Swing the tilt stand out to free the cover.

c. Slide the cover rearward far enough to free the forward edge.

d. Tilt the forward edge of the cover upward and lift the cover from the instrument.

5-32. BOTTOM COVER REPLACEMENT.

a. Set the tilt stand out of the way of the cover.

b. Rest the bottom cover flat on the case guides projecting inward near the bottom of each side frame.

c. Slide the cover forward on the guides so that the formed portion at the rear of the cover slides over the two short projections at the rear corner of each side frame.

d. Replace the retaining screw.

^{*}This formula is accurate for on-scale readings; however, with no power applied (i.e., $V_1 = V_0$) it does not solve to P = 0 because of a deleted term + V0. This term can be neglected for any on-scale reading.

5-33. ADJUSTMENT PROCEDURES.

5-34. INITIAL SETUP.

a. Remove the power meter side panels.

b. Connect the equipment as shown in Figure 5-1. Refer to Table 5-1 for equipment specifications.

5-35. MECHANICAL METER ADJUSTMENT.

a. When the meter is properly zero-set, the pointer rests over the zero mark on the meter scale when the instrument is:

- (1) at normal operating temperature
- (2) in its normal operating position
- (3) turned off.

b. Set the pointer as follows to obtain best accuracy and mechanical stability:

- (1) Turn instrument off.
- (2) Rotate the meter mechanical adjustment screw clockwise until the meter is to the left of zero and moving up the scale toward zero. Stop when the pointer is exactly over the zero mark. If the pointer overshoots, repeat step 2.
- (3) When the pointer is exactly on zero, rotate the adjustment screw approximately three degrees counterclockwise. This frees the adjustment screw from the meter suspension. If the pointer moves during this step, repeat steps 2 and 3.

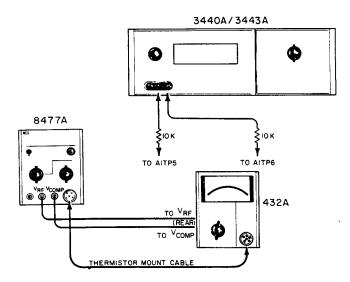


Figure 5-3. Bridge Amplifier Test

5-36. BRIDGE AMPLIFIER TESTS.

- a. Connect equipment as shown in Figure 5-3.
- b. Compensation Bridge.
 - (1) Connect 3440A/3443A between A1TP5 and A1TP6 (using 10K isolation resistors).
 - (2) Make the following settings:

432A

RANGE												•				10 mW
MOUNT	F	2]	E	SI	SI	Ϋ́Α.	N	٩C	ĽE	;	•				•	. 200Ω

8477A

FUNCTION SET

- (3) Adjust A1R12 (OFFSET ADJUST) for 0.0 $\pm 0.1 \text{ mVdc}$ reading on the digital voltmeter.
- (4) Change 8477A FUNCTION to CHECK. The digital VM reading should not exceed ± 0.4 mVdc.
- c. RF BRIDGE
 - Connect DVM between A1TP3 and A1TP4 using 10K isolation resistors in series with the leads.
 - (2) Set 8477A FUNCTION to SET. Adjust A1R15 (OFFSET ADJUST) for DVM reading of 0.0 ±0.1 mVdc.
 - (3) Change 8477A FUNCTION to CHECK. The reading should not exceed ±0.4 mVdc.

Note

Failure of the instrument to meet the specification of steps b (4) and c (3) above indicates insufficient bridge gain. Refer to Tables 7-3 or 7-4 in the troubleshooting section.

5-37. <u>METER AND RECORDER OUTPUT CALIB-</u> RATION.

a. Connect the DVM to the 432A RECORDER output.

b. Set 8477A controls as follows:

FUNCTION.												200Ω
ZERO/TEST												
POWER												1 mW

c. Set 432A controls as follows:
A2S1 (on Meter Logic Assy) CALIBRATE
MOUNT RES
RANGE 1 mW
CAL FACTOR 100%

Section V Maintenance

d. Adjust Zero control on 8477A for DVM indication of 0.000 $\pm.001V.$

e. ZERO/TEST on 8477A to TEST.

f. Adjust A2R6 in 432A for 432A meter reading of 1.0 mW $\pm,$ 01 mW.

g. Adjust A2R74 in 432A for DVM reading of 1.0V $\pm.001V.$

h. Change the following settings:

432A RANGE to 10 mW 8477A POWER (mW) to 10 mW and ZERO/TEST to ZERO.

Note

When switching 432A to 10 mW or switching from 10 mW to any other range, the meter will react slowly for a short period. This is due to time constants in the instrument and is normal.

i. Check zero and adjust as necessary.

j. Set ZERO/TEST to TEST and adjust A2R86 for DVM reading of $1.00 \pm .001V$.

k. Return 432A RANGE and 8477A POWER switches to 1 mW and zero as before.

1. Adjust A2R6 for DVM reading of $1.000 \pm .001V$.

m. Perform the adjustments of steps h through 1 again until 432A reads $1 \pm .010V$ (at recorder output) on both 1 mW and 10 mW ranges.

n. Set A2S1 to OPERATE.

o. Turn to the beginning of this section; verify that the instrument meets its specifications by completing the PERFORMANCE TESTS.

5-37A. AUTO ZERO ADJUSTMENT, A1R43 †

a. Remove the right side panel.

b. Connect a mount to the 432A and adjust COARSE ZERO.

c. Switch RANGE to -20 dBm, push FINE ZERO down and adjust A1R43 for a zero indication on the front panel meter.

d. Release FINE ZERO and replace the right side panel.

5-38. <u>BATTERY CHARGER ADJUS TMENT (OPTION</u> 01_ONLY).

a. Remove the power meter top panel.

b. Connect 432A to ac line power and turn ON.

c. Set A7R8 fully counterclockwise for maximum battery charge rate.

d. With the digital voltmeter, measure the voltage between A7TP1 and A7TP2.

e. Adjust A7R8 for digital voltmeter reading of 0.2 to 0.4 volt (20 to 40 mA through R3) when battery is fully charged.

f. Disconnect the test equipment and power, and replace the power meter top and side panels.

5-39. BATTERY REMOVAL.

a. Remove the top cover.

b. Remove the two Phillips screws on the top rear of the battery cover.

c. Lift off the battery cover.

d. Loosen the nuts on the battery binding posts.

e. Lift out the battery.

5-40. ISOLATING TROUBLE IN TRANSISTOR CIRCUITS.

5-41. <u>General</u>. The following information should help determine if a transistor works. There are tests for both in - circuit and out - of - circuit transistors, which help to determine if a particular trouble is due to a faulty transistor of some other component. See Figure 5-2.

		Connect	Ohmmeter				
		Positive Lead to	Negative Lead to	Measure Resistance (ohms)			
		emitter	base*	200 - 500			
PNP Germanium	Small Signal	emitter	collector	10K - 100K			
	Daman	emitter	base*	30 - 50			
	Power	emitter	collector	several hundred			
	0 - 11 0 - 1	base	emitter	1K - 3K			
NDN Ciliner	Small Signal	collector	emitter	veryhigh (might read open)			
NPN Silicon	Demen	base	emitter	200 - 1000			
	Power	collector	emitter	high, often greater than 1M			
1							

*To test for transistor action, add collector-base short. Measured resistance should decrease.

Section V Maintenance

DEVICE	SYMBOL	CUT OFF	CONDUCTING
NPN TRANSISTOR		+ 20V (OR-)	+ 20V +.3V CONTROL CURRENT
PNP TRANSISTOR			-20 V -3V CURRENT CURRENT

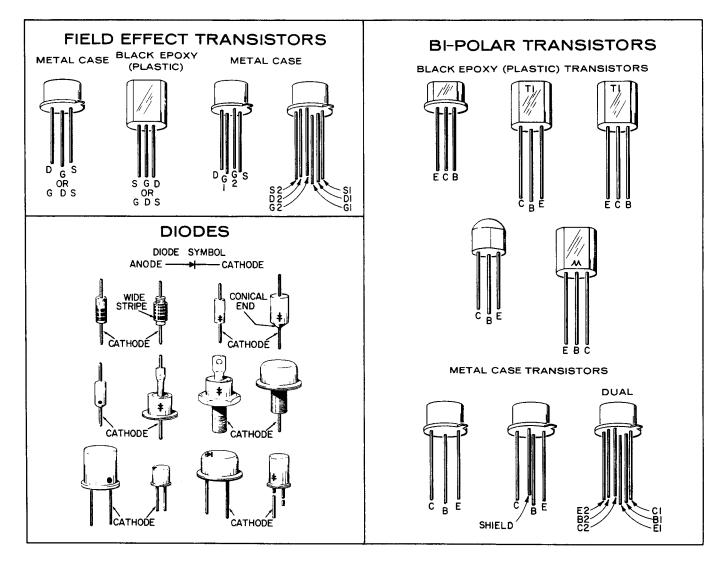


Figure 5-4. Transistor Biasing and Operating Characteristics

Item	Use	Specification	Item Recommended						
Soldering Tool	Soldering, unsoldering	Wattage rating: 37.5 Tip Temp: 750-800°F Tip Size: 1/8" OD	Ungar #776 handle with Ungar #1237						
Soldering Tip, General Purpose	Soldering, unsoldering	Shape: chisel Size: 1/8"	Ungar #PL113						
De-soldering Aid	Unsoldering multiconnection components	Suction device to remove mol- ten solder from connection	Soldapult by the Edsyn Company, Arleta, Calif.						
Resin (flux) Sol- vent	Remove excess flux from soldered area before appli- cation of protection coating	Must not dissolve etched circuit base board material or conduc- tor bonding agent	Freon, Acetone, Lacquer Thinner, Isopropyl Alco- hol (100% dry)						
Solder	Component replacement, cir- cuit board repair or wiring	Resin (flux) core, high tin con- tent (60/40 tin/lead), 18 gauge (SWG) preferred							
Protective Coat- ing	Contamination, corrosion protection after soldering	Good electrical insulation, cor- rosion-preventive properties	Krylon #1320*, Humiseal Protective Coating, Type 1B12 by Columbia Tech- nical Corp., Woodside 77, New York						
*Krylon, Inc., Norristown, Pennsylvania									

Table 5-6.	Etched	Circuit	Soldering	Equipment
------------	--------	---------	-----------	-----------

5-42. <u>In-Circuit Testing</u>. In transistor circuit testing the most important consideration is the transistor base-emitter junction. Like the control grid of a vacuum tube, this is the control point in the transistor.

5-43. To check a transistor, first see if the emitterbase diode is forward-biased by measuring the voltage difference between emitter and base. When using an electronic voltmeter, do not measure directly between emitter and base; there may be sufficient loop current between the voltmeter lead to damage the transistor. Instead, measure each voltage separately with respect to a voltage common point (e.g., chassis).

5-44. If the transistor base - emitter junction is forward-biased, the transistor conducts. If the diode is heavily forward-biased, the transistor saturates. However, if the base-emitter diode is reverse-biased, the transistor is cut off (open). The voltage drop across a forward-biased emitter-base junction varies with transistor collector current. A germanium transistor has a typical base-emitter voltage of 0.2-0.3-volt with 1-10 mA collector current and 0.4-0.5 volt with 10-100 mA collector current. In contrast, base-emitter voltage for silicon transistors is about twice that for germanium types; about 0.5-0.6 volt for low collector current, and about 0.8-0.9 for high collector current.

5-45. If the emitter base-junction is forward-biased, check for amplifier action by short-circuiting base to emitter while observing collector voltage. The

transistor should stop conduction (cut off), which should shift the collector voltage close to the supply voltage. Any difference is due to current leakage through the transistor. In general, the smaller the current, the better the transistor. If collector voltage does not change, the transistor has either an emitter-collector short circuit or emitter-base open circuit.

5-46. OUT-OF-CIRCUIT TESTING.

5-47. The two common causes of transistor failure are internal short- and open-circuits. Remove the transistor from the circuit and use an ohmmeter to measure internal resistance. See Table 5-5 for measurement data.

5-48. COMPONENT REPLACEMENT IN ETCHED CIRCUITS.

5-49. <u>General</u>. Etched circuit boards are sensitive to heat and to scratches with sharp objects. This is because the conductors are plated onto the circuit boards and the plating extends through the component mounting holes. Whenever possible, avoid unnecessary component substitution; it can damage the circuit board and adjacent components. See Table 5-6 for recommended tools and materials.

5-50. AXIAL-LEAD COMPONENTS.

5-51. Resistors, tubular capacitors and other axiallead components can be replaced without unsoldering. Cut the component leads near the body of the defec-

Section V Maintenance

		Open Circuit	Short Circuit	Lead			
	Safe Range(s)	Voltage	Current	Color	Polarity		
HP 412 HP 427A	R x 1 k R x 10 K R x 100 k R x 100 k R x 1M R x 10M	1.0V 1.0V 1.0V 1.0V 1.0V 1.0V	1 mA 100 μA 10 μA 1 μA 0.1 μA	Red Black	+ -		
HP 410C	R x 1 k R x 10 k R x 100 k R x 100 k R x 1M R x 10M	1.3 V 1.3 V 1.3 V 1.3 V 1.3 V 1.3 V	0.57 mA 57 μA 5.7 μA 0.5 μA 0.05 μA	Red Black	+ -		
HP 410B	R x 100 R x 1 k R x 10 k R x 100 k R x 100 k R x 1M	1. 1 V 1. 1 V 1. 1 V 1. 1 V 1. 1 V 1. 1 V	$\begin{array}{cccc} 1.1 & mA \\ 110 & \mu A \\ 11 & \mu A \\ 1.1 & \mu A \\ 0.11 & \mu A \end{array}$	Black Red	+ -		
Simpson 260	R x 100	1.5 V	1 mA	Red Black	+ -		
Simpson 269	R x 1 k	1.5 V	0.82 mA	Black Red	+ -		
Triplett 630	R x 100 R x 1 k	1.5 V 1.5 V	3.25 mA 325 μA	Varies	with Serial		
Triplett 310	R x 10 R x 100	1.5 V 1.5 V	750 μΑ 75 μΑ	Number			

Table 5-7.	Safe Ohmmeter Range for	Transistor Resistance Measurements
100010 0 0.	Sare Ommineter realige re-	

tive component, remove the component and straighten the leads left in the board. Wrap leads of the replacement component one turn around the original leads, solder the connection, and clip off the excess lead.

5-52. OTHER COMPONENTS.

5-53. Replace other components as follows:

a. Remove defective component from circuit board. Use a low - power soldering iron because excessive heat may lift a conductor or damage the board.

b. Remove solder from mounting holes with a suction device or a wooden toothpick. DO NOT USE A SHARP METAL OBJECT SUCH AS AN AWL OR TWIST DRILL. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CONDUCTOR.

c. Shape the leads of the replacement component to match the mounting-hole spacing.

d. Insert the component leads in the mounting holes and position it as the original was. DO NOT FORCE LEADS OF REPLACEMENT COMPONENT INTO MOUNTING HOLES. A sharp edge on the lead may damage the plated-through conductor.

e. Solder the component in place and remove excess flux from the soldered areas. Apply a protective coating to prevent contamination and corrosion. See Table 5-6 for recommendations.

CAUTION

Most ohmmeters can supply enough current or voltage to damage a transistor. Before using an ohmmeter to measure transistor forward or reverse resistance, check its open-circuit voltage and shortcircuit current output ON THE RANGE TO BE USED. Open-circuit voltage must not exceed 1.5 volts and short-circuit current must be less than 3 mA.

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators provides the following information on each part:

a. Description.

b. Manufacturer of the part in a five-digit code; see list of manufacturers in Table 6-2.

- c. Manufacturer's part number.
- d. Total quantity used (TQ column).

6-3. ORDERING INFORMATION.

6-4. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office (see list at rear of this manual for addresses). Identify parts by their Hewlett-Packard stock numbers.

- 6-5. To obtain a part that is not listed, include:
 - a. Instrument model number.
 - b. Instrument serial number.
 - c. Description of the part.
 - d. Function and location of the part.

REFERENCE DESIGNATORS

A B C C P C R D L DS E		motor battery capacitor coupler diode delay line device signaling (lamp)	F FL J K L LS M MK		fuse filter integrated circuit jack relay inductor loud speaker meter microphone	MP P Q R T S T B T P		mechanical part plug transistor resistor thermistor switch transformer terminal board test point	V VR W X Y Z		vacuum, tube, neon bulb, photocell, etc. voltage regulator cable socket crystal tuned cavity, network
					ABBREVIAT	ONS					
A AFC AMPL		automatic frequency control	H HDW HEX HG HR		henries hardware hexagonal mercury hour(s)	n/o NPO NPN		normally open negative positive zero (zero temperature coefficient) negative-positive-	RMO RMS RWV		rack mount only root-mean square reverse working voltage
BFO BE CU BH BP BRS BWO	=	beryllium copper binder head bandpass brass	HZ IF IMPG INCD INCL		hour(s) hertz intermediate freq impregnated include(s)	NRFR NSR	=	negative-positive- negative not recommended for field replacement not separately replaceable	S-B SCR SE SECT SEMICON SI	× × = ×	slow-blow screw selenium section(s) semiconductor silicon
CCW CER CMO COEF COM	1 1	counter-clockwise ceramic cabinet mount only coefficient common	INCL INS INT K		insulation(ed) internal kilo = 1000	OBD OH OX		order by description oval head oxide	SIL SL SPG SPL	4 4 8 B	silver slide spring special
COMP COMPL CONN CP	=	composition complete	LH LIN LK WASH LOG	1 8 1	left hand linear taper lock washer	P PC PF		peak printed circuit picofarads = 10 ⁻¹² farads	SST SR STL TA		stainless steel split ring steel tantalum
CRT CW		cathode-ray tube clockwise	LOG LPF M		logarithmic taper low pass filter milli = 10 ⁻³	PH BRZ PHL PIV	H B H	phosphor bronze Phillips peak inverse voltage	TD TGL THD	9 H K	time delay toggle thread
DEPC DR ELECT	н и и	drive	MEG MET FLM MET OX	=	meg = 10 ⁶ metal film metallic oxide	PNP P/O	=	positive-negative- positive part of	TI TOL TRIM TWT		titanium tolerance trimmer traveling wave tube
ENCAP EXT F	=		MFR MHZ MINAT	ни	manufacturer mega hertz miniature	POLY PORC POS POT		polystyrene porcelain position(s)	U VAR	-	micro = 10^{-6} variable
F FH FIL H FXD	1 1	ALAC HOMA	MOM MTG MY	H H H	momentary mounting ''mylar''	PP PT PWV		potentiometer peak-to-peak point peak working voltage	VDCW W/	=	dc working volts with
G GE GL GRD		giga (10 ⁹) germanium glass	N N/C NE NI PL		nano (10 ⁻⁹) normally closed neon nickel plate	RECT RF RH		rectifier radio frequency round head or right hand	W WIV WW W/O	н п п	watts working inverse voltage wirewound without

01194-13

Table	6-1.	Replaceable	Parts
I GOLC	· ·	repressions	* *** **

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1 A1A1 A1C1 A1C2 A1C3	00432-60024 00432-6011 0180-0374 0160-2055 0160-2055	1 1 2 8	BOARD ASSY:BRIDGE ASSY:AUTU ZERO C:FXD TANT. 10 UF 10% 20VDCM C:FXD CER 0.01 UF +80-20% 100VDCM C:FXD CER 0.01 UF +80-20% 100VDCM	2 84 80 284 80 562 89 562 89 562 89 562 89	00432-60024 00432-6011 1500106x902082-DYS C023F101F103ZS22-CDH C023F101F103ZS22-CDH
A1C4 A1C5 A1C6 A1C7 A1C8	0140-0380 0140-2055 0160-2055 0160-2055 0160-2055 0160-0380	2	C:FXD MY 0.22 UF 10% 200VDCH C:FXD CER 0.01 UF +80-20% 100VDCH C:FXD CER 0.01 UF +80-20% 100VDCH C:FXD CER 0.01 UF +80-20% 100VDCH C:FXD MY 0.22 UF 10% 200VDCH	28480 56289 56289 56289 28480	0160-0380 C023F101F103Z S22-CDH C023F101F103Z S22-CDH C023F101F103Z S22-CDH 0160-0380
A1C9 A1C10 A1C11 A1C12 A1C13	0160-2055 0160-3459 0160-3459 0180-0374 0180-0374 0160-2055	2	C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.02 UF 20% 100VDCW C:FXD CER 0.02 UF 20% 100VDCW C:FXD CER 0.02 UF 20% 20VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	562 89 562 89 562 89 562 89 562 89 562 89	C023F101F103ZS22-CDH C023F101H203MS22CDH C023F101H203MS22CDH 1500106X9020H2-DYS C023F101F103ZS22-CDH
A1C14 A1CR1 A1CR2	0160~2055 1901-0 04 0	2	C:FXD CER 0.01 UF +80-20% 100VDCW DIDDE:Silicon 30MA 30WV NDT Assigned	56289 07263	C023F101F1032S22-CDH FDG1088
A1CR3 A101	1901-0040 1853-0020	13	DIDDE:SLLICON 30MA 30WV TSTR:SI PNPISELECTED FROM 2N3702)	07263 28480	FDG1088 1853-0020
A102 A103 A104 A105 A106	1853-0020 1853-0020 1854-0071 1854-0071 1854-0071	22 3	TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N1132)	28480 28480 28480 28480 28480 28480	1853-0020 1853-0020 1854-0071 1854-0071 1853-0001
A107 A108 A109 A1010 A1011	1854-0221 1854-0071 1854-0071 1854-0071 1854-0071 1853-0001	2	TSTR:SI NPN(REPL.BY 2N4044) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N1132)	28480 28480 28480 28480 28480 28480	1854-0221 1854-0071 1854-0071 1854-0071 1853-0001
A1012 A1013 A1014 A1015 A1R1	1854-0221 1854-0071 1853-0020 1853-0020 0698-3260	9	TSTR:SI NPN(REPL_BY 2N4044) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) R:FXD MET FLM 464K OHM 1% 1/8W	28430 28480 28480 28480 28480 28480	1854-0221 1854-0071 1853-0020 1853-0020 0698-3260
A1R2 A1R3 A1R5 A1R6 A1R6	0686-1055 0698-3160 0698-3160 0698-3160	1 13	R:FXD COMP 1 NEGOHM 5% 1/2N R:FXD MET FLN 31.6K OHM 1% 1/8N R:FXD MET FLM 31.6K OHM 1% 1/8N R:FXD MET FLM 31.6K OHM 1% 1/8N NDT ASSIGNED	01121 28480 28480 28480 28480	EB 1055 0698-3160 0698-3160 0698-3160
ALR7 Alr8 Alr9 Alr10 Alr11	0698-3156 0757-0465 0698-3136 0698-3441 0757-0401	7 9 1 3 4	R:FXD MET FLM 14.7K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 17.8K OHM 1% 1/8W R:FXD MET FLM.215 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0698-3156 0757-0465 0698-3136 0698-3441 0757-0401
A1R12 A1R12 A1R12 A1R12 A1R12	2100-1770 0757-0439 0698-3449	2 4	R:VAR WW 100 DHN 5% TYPE H 1W R:FXD NET FLM 6-81k GHM 1% 1/8W (FOR DPT 013) R:FXD NET FLM 28-7k OHM 1% 1/8W	28480 28480 28480	2100-1770 0757-0439 0698-3449
A1R12 A1R13	0757-0461	4	(OPT 011) R:FXD NET FLN 68-1K OHM 1 1 1/8W	28480	0757-0461
A1R13 A1R13 A1R13	0757-0443 0698-3162	2	R:FXD MET FLM 11.0K OHM 1% 1/8W (For opt 013) R:FXD met Flm 46.4k ohm 1% 1/8W	28480 28480 28480	0757-0443 0698-3162
A1R13 A1R14 A1R15 A1R16 A1R17 A1R18	08 11-2284 0757-0199 08 11-2284	5 7	(OPT 011) KIFXD WW 1K DHM 0-1% 1/40W RIFXD WE 1K DHM 0-1% 1/40W RIFXD WW 1K DHM 0-1% 1/40W Not Assigned	284 80 284 80 284 80 284 80	0811-2284 0757-0199 0811-2284
A1£19 A1R20 A1R21 A1R22 A1R23	0698-3441 0696-3160 0698-3160 0698-3156 0757-0465		R:FX0 MET FLM 215 OHM 1% 1/8W R:FX0 MET FLM 31.6K OHM 1% 1/8W R:FX0 MET FLM 31.6K OHM 1% 1/8W R:FX0 MET FLM 14.7K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0698-3441 0698-3160 0698-3160 0698-3150 0698-3156 0757-0465
A1R24 A1R25 A1R26 A1R27 A1R28	0757-0401 2100-1770 0757-0461 0811-2284 0757-0199		R:FXD MET FLM 100 OHM 1% 1/8W R:VAR WW 100 OHM 5% TYPE H 1W R:FXD MET FLM 68-1K OHM 1% 1/8W R:FXD WW 1K OHM 0.1% 1/40W R:FXD MET FLM 21.5K OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0401 2100-1770 0757-0461 0811-2284 0757-0199
A1R29 A1R30 A1R31 A1R32 A1R32 A1R32	0811-2284 0757-0199 0698-3260 0757-0289	2	R:FXD WW 1K OHM 0-1% 1/40W R:FXD MET FLM 21.5K OHM 1% 1/8W R:FXD MET FLM 464K OHM 1% 1/8W R:FXD MET FLM 13.3K OHM 1% 1/8W (FOR OPT 012)	28480 28480 28480 28480 28480	0811-2284 0757-0199 0698-3260 0757-0289

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1R32	0757-0439		R:FXD MET FLN 6.81K OHM 1% 1/8W	28480	0757-0439
A1R32 A1R32	0698-3449		(FOR OPT 013) R:FXD HET FLM 28.7K OHM 1% 1/8W	28480	0698-3449
A1R32			(OPT 011)		
A1R33	0757-0465		R:FXD MET FLM 100K OHM 13 1/8W	28480	0757-0465
A1834	0757-0465		R:FXD MET FLN 100K OHM 1% 1/8W	28480	0757-0465
A1R35 A1R36	0757-0442 0757-0279	11 7	R:FXD MET FLN 10-0K OHN 1% 1/8W R:FXD MET FLN 3-16K OHN 1% 1/8W	28480 28480	0757-0442 0757-0279
A1R37 A1R38	0757-0279 0757-0279		R:FXD MET FLM 3.16K OHM 1% 1/8W	28480	0757-0279
			R:FXD MET FLN 3-16K OHM 1% 178W	28480	0757-0279
A1R39 A1R40	0757-0279 0698-3160		R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/8W	28480 28480	0757-0279 0698-3160
A1R41	0698-3160		R:FXD MET FLM 31.6K CHM 1% 1/8W	28480	0698~3160
A1R42 A1R42	0757-0199		R:FXD MET FLM 21.5K DHM 1% 1/8W (For Opt 012)	28480	0757-0199
A1R42	0757-0443				0757-0443
A1R42			R:FXD MET FLM 11.0K OHM 1% 1/8W (For opt 013)	28480	0757-0445
A1R42 A1R42	0698-3162		R:FXD MET FLM 46.4K DHM 1% 1/8W (OPT 011)	28480	0698-3162
A1R42	0698-3455	1	R:FXD MET FLM 261K OHM 1% 1/8W	28480	0698-3455
A1R42			(OPT 010)		
A1R43	2100-1618	2	R:VAR FLM 1 MEGOHM 20% LIN 1/2W	28480	2100-1618
A1R44 AltP1	0683-1855 0360-0124	117	R:FXD COMP 1.8 MEGOHM 5% 1/4W Terminal:Solder Lug	01121 284 80	CB 1855 0360-0124
ALTP2	0360-0124		TERMINAL:SOLDER LUG	28480	0360-0124
A1TP3			PART OF PC BOARD		
ALTP4 Altp5	0360-0124		TERMINAL:SOLDER LUG Part of PC board	28480	0360-0124
ALTP6 ALTP7	0360-0124 0360-0124		TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG	28480 28480	0360-0124 0360-0124
A1TP8	0360-0124		TERMINAL:SOLDER LUG	28480	0360-0124
A1TP9 A2	0360-0124 00432-6015	1	TERMINAL:SOLDER LUG Board Assy:Logic	284 80 284 80	0360-0124 00432-6015
A2C1	0180-1819	1	C:FXD ELECT 100 UF +75-10% 50VDCW	28480	0180-1819
A2C2	0180-0229	3	C:FXD, ELECT 33 UF 10% 10VDCH	28480	0180-0229
A2C3 A2C4	0160-2917	6	C:FXD CER 0.05 UF +80-20% 100VDCW	84411	TYPE TA
A2C5 A2C6	0160-2917		NDT ASSIGNED C:FXD CER 0-05 UF +80-20% 100V0CW NDT ASSIGNED	84411	TYPE TA
THRU					
A2C20			NOT ASSIGNED		
A2C21 A2C22)140-0234 0140-0234	2	C:FXD NICA 500 PF 1% C:FXD NICA 500 PF 1%	28480	0140-0234
A2C23	0180-1746	1	C:FXD ELECT 15 UF 10% 20VDCW	2 84 80 284 80	0140-0234 0180-1746
A2C24	0140-0210	1	C:FXD MICA 270 PF 5%	28480	0140-0210
A2C25	0160-0978	1	C:FXD MICA 1530 PF 1% 500VDCW	28480	0160-0978
A2C26 A2C27	0160-2930	4	C:FXD CER 0.01 UF +80-203 10DVDCH NDT ASSIGNED	91418	TA
A2C28	0100 0170		NOT ASSIGNED		
A2C29	Q180-2178	1	CEFXD ELECT 220 UF 20% BVDCW	56289	109D227X0008F2-DYP
A2C30 A2C31	0160-2930 0180-1940	1	C:FXD CER 0.01 UF +80-20% 100VDCH C:FXD ELECT 33 UF 10% 15VDCH	91418 56289	TA 1090 336 X901 502 - DVP
A2C33	0180-0197	5	C:FXD ELECT 2.2 UF 10% 20V0CW	562 89	1500225X9020A2-DYS
A2C34 A2C35	0160-2672 0180-0197	1	C*FXD NY 0.047 UF 5% 80VDCH C*FXD ELECT 2.2 UF 10% 20VDCW	28480 56289	0160-2672 150D225X9020A2-DYS
A2C36 A2C37	0160-2917		C:FXD CER 0.05 UF +80-20% 100VDCW Not Assigned	84411	TYPE TA
A2C38 A2C39	0160-2917 0160-2150	1	C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD MICA 33 PF 5%	84411	TYPE TA
A2C40	0180-0229	•	C:FXD HICA 33 PF 5% C:FXD ELECT 33 UF 10% 10VDCM	28480 28480	0160-2150 0180-0229
A2C41	0160-2917	[C:FXD CER 0.05 UF +80-20% 100VDCH	84411	ΤΥΡΕ ΤΑ
A2C42	0180-0106	2	C:FXD ELECT 60 UF 20% 6VDCW	28480	0180-0106
A2C43 A2C44	0180-0197 0180-0197		C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD ELECT 2.2 UF 10% 20VDCW	56289 56289	150D225X9020A2-DYS 150D225X9020A2-DYS
A2C45	0180-0106		C:FXD ELECT 60 UF 20% 6VDCW	28480	0180-0106
A2C45	0180-1714	1	C:FXD ELECT 330 UF 10% 6VDCW	28480	0180-1714
A2C45 A2C46	0160-2253	1	(DPT 011,012,013) C:FXD CER 6.8 PF 500VDCW	72982	301-NP0-6.8 PF
A2C47 A2C46	0160-2930	1	C:FXD CER 0.01 UF +80-20% 100VDCW NJT ASSIGNED	91418	301-NP0-6-8 PF TA
	0180-0220			20100	0100 0320
A2C49 A2C50	0180-0229 0160-2917		C:FXD ELECT 33 UF 10% 10VDCW C:FXD CER 0.05 UF +80-20% 100VDCW	28480 84411	0180-0229 Type ta
	1901-0026	20	DIODE:SILICON 0.75A 200PIV	04713	SR1358-8
A2CR1	1001-0024	1			
A2CR1 A2CR2 A2CR3	1901-0026 1901-0026		DIODE:SILICON 0.75A 200PIV DIODE:SILICON 0.75A 200PIV	04713 04713	SR1358-8 SR1358-8

Table 6-1. Replaceable Parts

Table 6-1. Replaceable I

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2CR4 A2CR5 A2CR6 A2CR7 A2CR8	1901-0026 1901-0026 1902-0509 1901-0026 1901-0026	1	DIDDE:SILICON 0.75A 200PIV DIDDE:SILICON 0.75A 200PIV DIDDE BREAKDOWN:6.20V 23 DIDDE:SILICON 0.75A 200PIV DIDDE:SILICON 0.75A 200PIV	04713 04713 04713 04713 04713 04713	SR1358-8 SR1358-8 SZ50984 SR1358-8 SR1358-8 SR1358-8
AZCR9	1701 0020		NDT ASSIGNED	04723	312320 0
A2CR10 A2CR11 A2CR12 A2CR13	1901-0026 1901-0026		NOT ASSIGNED Didde:Silicon 0.75A 200Piv Didde:Silicon 0.75A 200Piv Not Assigned	04713 04713	SR1358-8 Sr1358-8
A2CR14 A2CR15 A2CR16 A2CR16 A2CR17 A2CR18	1901-0026 1901-0026 1901-0026 1901-0026 1901-0026		DIODE:SILICON 0.75A 200PIV DIDDE:SILICON 0.75A 200PIV DIDDE:SILICON 0.75A 200PIV DIDDE:SILICON 0.75A 200PIV DIDDE:SILICON 0.75A 200PIV	04713 04713 04713 04713 04713 04713	SR1358-8 SR1358-8 SR1358-8 SR1358-8 SR1358-8 SR1358-8
AZCR19 A2CR20 A2CR21 A2CR22 A2CR22 A2CR23	1901-0026 1901-0026 1901-0026 1901-0026 1901-0026		DIGGE:SILICON 0.75A 200PIV DIGGE:SILICON 0.75A 200PIV DIGGE:SILICON 0.75A 200PIV DIGGE:SILICON 0.75A 200PIV DIGGE:SILICON 0.75A 200PIV	04713 04713 04713 04713 04713 04713	SR1358-8 SR1358-8 SR1358-8 SR1358-8 SR1358-8 SR1358-8
A201 A202 A203 A204 A205	1854-0071 1854-0062 1854-0071 1853-0012 1853-0020	1 1	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP TSTR:SI PNP(SELECTED FROM 2N3702)	28480 80131 28480 80131 28480	1854-0071 2N1701 1854-0071 2N2904A 1853-0020
A206 A207 A208 A209 A209	1853-0020 1853-0020 1854-0071 1854-0003 1853-0001	1	TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N1711) TSTR:SI PNP(SELECTED FROM 2N1132)	28480 28480 28480 28480 28480 28480	1853-0020 1853-0020 1854-0071 1854-0003 1853-0001
A2011 A2012 A2019 A2020	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704) Not Assigned Not Assigned TSTR:Si PNP(selected From 2N3702)	28480	1854-0071 1853-0020
A2021	1854-0005	2	TSTR:SI NPN	80131	2N708
A2022 A2023 A2024 A2025	1854-0071 1854-0071 1854-0005		TSTR:SI NPN(SELECTED FROM 2M3704) TSTR:SI NPN(SELECTED FROM 2M3704) TSTR:SI NPN NOT ASSIGNED	28480 28480 80131	1854-0071 1854-0071 2N708
A2U27 A2U27 A2U28 A2U29 A2U30 A2U31	1854-0071 1854-0071 1854-0009 1854-0009 1855-0062	2 3	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN TSTR:SI NPN TSTR:SI FET 30V NOT ASSIGNED	28480 28480 80131 80131 01295	1854-0071 1854-0071 20709 20709 201595
A2Q32 A2Q33 A2Q34	1855-0062 1854-0071		TSTR:SI FET 30V Not Assigned TSTR:SI NPNISELECTED FROM 2N3704)	01295 28480	2N1595 1854-0071
A2035 A2036	1854-0071 1853-0015	1	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP	28480 80131	1854-0071 2N3640
A2037 A2038 A2039 A2040 A2041	1853-0020 1855-0062 1854-0071 1854-0071 1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI FET 30V TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702)	28480 01295 28480 28480 28480 28480	1853-0020 2N1595 1854-0071 1854-0071 1853-0020
A2042 A2043 A2044 A2R1 A2R2	1853-0020 1854-0071 1854-0071 0757-0279 0683-0685	I	TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD COMP 6.8 OHM 5% 1/4W	28480 28480 28480 28480 01121	1853-0020 1854-0071 1854-0071 0757-0279 C868865
A2R3	0757-0835	1	RIFXD MET FLM 6.81K OHN 1% 1/2W	28480	0757-0835
A2R4 A2R5 A2R6 A2R7	0757-0447 2100-1773 0757-0289	2 1	NOT ASSIGNED R:FXD MET FLM 16.2K OHM 1% 1/8W R:VAR WW 1K OHM 5% TYPE H 1W R:FXD MET FLM 13.3K OHM 1% 1/8W	28480 28480 28480	0757-0447 2100-1773 0757-0289
AZRS AZR9	0757-0280 0757-0458	4	R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 51.1K ohm 1% 1/8W	28480 28480	0757-0280 0757-0458
A2R10 A2R11	0757-0401 0757-0465	£	R:FXD MET FLM 100 DHN 1% 1/8W R:FXD MET FLM 100K DHN 1% 1/8W	28480 28480	0757-0401 0757-0465
A2R12	0757-0442		R:FXD MET FLM 10.0K OHM 1% 1/SW	28480	0757-0442
A2R13 A2R14 A2R15	0757-0447 0757-0442		R:FXD HET FLM 16.2K DHM 1% 1/8W NDT ASSIGNED R:FXD MET FLM 10.0K DHM 1% 1/8W	28480 28480	0757-0447 0757-0442
A2R16	0757-0279 0757-0198	2	R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 100 DHM 1% 1/2W	28480 28480 28480	0757-0279

Table 6	6-1.	Replaceable	Parts
---------	------	-------------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
				20/ 20	
A2R18 A2R19 A2R20	0698-3401	1	R:FXD MET FLN 215 DHM 1% 1/2W Not Assigned Not Assigned	28480	7698-3401
A2R21 A2R22	0698-3156 0757-0442		R:FXD MET FLM 14.7K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W	28480 28480	0698-3156 0757-0442
A2R23	0757-0442		RIFXD HET FLM 10.0K DHM 1% 1/8W	28480	0757-0442
A2R24 A2R25	0698-3260 0698-3260		R:FXD MET FLM 464K OHM 12 1/8W R:FXD MET FLM 464K OHM 12 1/8W	28480 28480	0698-3260 0698-3260
A2R26 A2R27	0757-0442		R:FXD MET FLM 10.0K OHM 1% 1/8H R:FXD MET FLM 10.0K OHM 1% 1/8H	284 80 284 80	0757-0442 0757-0442
A2R28	0698-3156		R:FXD MET FLN 14.7K OHM 18 1/8W	28480	0698~3156
A2R29 A2R30	0757-0397	1	R:FXD MET FLM 68.1 OHM 1% 178W Not assigned	28480	0757-0397
A2R31 A2R32	0757-0199		NOT ASSIGNED R:FXD met FLM 21.5k OHM 1% 1/8w	28480	0757-0199
A2R33	0757-0442		R:FXD MET FLM 10.0K DHM 1% 1/8W	284 80	0757-0442
A2R34	0757-0465		R:FXD MET FLM 100K OHM 1% 1/8W	28480	0757-0465
A2R35 A2R36	0698-3266 0757-0461	1	R:FXD MET FLM 237K DHM 1% 1/8W R:FXD MET FLM 68.1K DHM 1% 1/8W	28480 28480	0698-3266 0757-0461
A2R 37	0698-3160		R#FXD HET FLM 31.5K OHM 12 1/8W	284 80	0698-3160
A2R38 A2R39	0757-0465 0698-3155	4	R:FXD MET FLM 100K OHM 13 1/8W R:FXD met FLM 4-64K ohm 13 1/8W	28480 28480	0757-0465 0698-3155
A2R40	0698-3155	7	R:FXD MET FLM 4.64K OHM 1% 1/8W	28480	0698-3155
A2R41 A2R42	0757-0465 0683-1065	3	R:FXD MET FLM 100K OHM 1% 178W R:FXD COMP 10M OHM 5% 174H	28480 01121	0757-0465 CB 1065
A2R43 A2R44	0757-1094	1	R:FXD MET FLM 1.47K OHM 1% 1/8W Not Assigned	28480	0757-1094
A2845			NOT ASSIGNED	20/ 00	0757 0445
A2x46 A2R47	0757-0465 0683-1065		RIFXD MET FLM 100K OHM 1% 178W Rifxd Comp 10m ohm 5% 174W	28480 01121	0757-0465 CB 1065
A2R48			NOT ASSIGNED		
A2R49 A2R50	0757-0280		NGT ASSIGNED R:FXD met flm 1k dhm 1% 1/8w	28480	0757-0280
A2R51 A2R52	0698-3260 0757-0279		R:FX0 MET FLM 464K OHM 1% 1/8W R:FXD MET FLM 3-16K OHM 1% 1/8W	28480 28480	0698-3260 0757-0279
A2R 53	0698-3160		R:FXD MET FLM 31.6K DHM 1\$ 1/8W	28480	0698-3160
A2R54 A2R55	0698-3428 0698-3160	1	R:FXD MET FEM 14.7 OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/8W	28480 28480	0698-3428 0698-3160
A2856 A2856	0698-3260		R:FXD MET FLM 464K DHM 13 1/8W Factory selected part	28480	0698-3260
A2R57	0757-0442		R:FXD MET FLM 10.0K DHM 1% 1/8W	28480	0757-0442
A2R 58 A2R 59	0698-3260 0698-3260		R:FXD MET FLM 464K OHM 1% 1/8W R:FXD MET FLM 464K OHM 1% 1/8W	28480 28480	0698-3260 0698-3260
A2R60	0698-0084	2	R:FXD NET FLM 2-15K OHM 1% 1/8W	28480	0698-0084
A2R61	0683-1055	1	R:FXD COMP 1, MEGOHM 5% 1/4W	01121	CB 1055
A2R61 A2R62			NDT ASSIGNED NDT ASSIGNED		
A2R63	0698-3260		R:FXD MET FLM 464K OHN 1% 1/8W	284 80	0698-3260
AZR 64 A2R65	07 57-043 9 07 57-0442		R:FXD MET FLM 6.81K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W	28480 28480	0757-0439 0757-0442
A2R 66	0757-0461		R:FXD MET FLM 68.1K DHM 1% 1/8W	28480	0757-0461
AZR67 AZR68	0698-3160 0757-0442		R:FXD NET FLM 31.6K DHM 1% 1/8W R:FXD MET FLM 10.0K DHM 1% 1/8W	28480 28480	0698-3160 0757-0442
A2R69 A2R70	0698-3438 0698-3156	1	R:FXD MET FLM 147 OHM.13 1/8W R:FXD MET FLM 14.7K OHM 13 1/8W	28480 28480	0698-3438 0698-3156
A2R71	0698-3160		R:FXD MET FLN 31.6K OHM 1% 1/8W	28480	0698-3160
AZR72 AZR73	0757-0401 0757-0199		R:FXD MET FLM 100 DHM 1% 1/8W R:FXD MET FLM 21.5K DHM 1% 1/8W	28480 28480	0757-0401 0757-0199
AZR74 AZR75	2100-1769 0698-4466	1	R:VAR WM 50 0HM 5% TYPE H 1W R:FXD MET FLM 976 0HM 1% 1/8W	28480 28480	2100-1769 0698-4466
A2R76	07 57-0346	14	R:FX0 MET FLM 10 OHM 1% 1/8W	28480	0757-0346
AZR77	0698-3160		R:FXD NET FLM 31.6K OHM 1% 1/8W	28480	0698-3160
A2R78 Azr79	0811-2277 0811-2277	3	R:FXD WW 10K OHM 0-1% 1/40W R:FXD WW 10K OHM 0-1% 1/40W	28480 28480	0811-2277 0811-2277
AZRBO	0811-2537	1	R:FXD WW 5K DHM 0.1% 1/40W	28480	0811-2537
A2R81 A2R82			NOT ASSIGNED NDT ASSIGNED		
A2683	0698-3441		R:FXD MET FLM 215 OHM 14 1/8W	2 84 80	0698-3441
A2R84 A2R85			NOT ASSIGNED NOT ASSIGNED		
A2K 86	2100-1618		R:VAR FLM 1 MEGOHM 20% LIN 1/2W	28480	2100-1618
42R87 42R88	0683-1065 0757-0405	1	R:FXD COMP 10H UHM 5% 1/4W R:FXD MET FLM 162 0HM 1% 1/8W	01121 28480	CB 1065 0757-0405
A251 A2TP1	3101-0973	1 i	SWITCH:SLIDE DPDT 0.5A 125V AC/DC	79727 28480	G126-0018 0360-0124
MEIT1	0360-0124		TERMINAL: SOLDER LUG	∠ 2 84 8 0	0300-0124

Table 6-	- 1.	Replaceable	Parts
----------	------	-------------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2TP2 A2TP3	0360-0124 0360-0124		TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG	28480 28480	0360-0124 0360-0124
A2TP4 A2TP5 A2TP6	0360-0124 0360-0124 0360-0124		TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG TERNINAL:SOLDER LUG	28480 28480 28480	0360-0124 0360-0124 0360-0124
A2TP7 A2TP8 A2TP9 A2TP10 A3	0360-0124 0360-0124 0360-0124 0360-0124 0360-0124 00432-6003	1	TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG SWITCH ASSY:RANGE	28480 28480 28480 28480 28480 28480	0360-0124 0360-0124 0360-0124 0360-0124 0360-0124 00432-6003
A3R1 A3R2 A3R3 A3R4 A3S1	0811-2536 0811-2284 0811-2534 0811-2535 3100-2470	1 1 1	R:FXD WW 3167 DHN 0.1% 1/40W R:FXD WW 1K OHM 0.1% 1/40W R:FXD WW 314.3 OHM 0.1% 1/40W R:FXD WW 145.0 OHN 0.1% 1/40W Switch:Rotary	28480 28480 28480 28480 28480 28480	0811-2536 0811-2284 0811-2534 0811-2535 3100-2470
A4 A4R1 A4R2 A4R3 A4R4	00432-6004 0757-0346 0757-0346 0757-0346 0757-0346 0757-0346	1	SWITCH ASSY:CALIBRATION FACTOR R:FXD MET FLM 10 OHM 13 1/8W R:FXD MET FLM 10 OHM 13 1/8W R:FXD MET FLM 10 OHM 13 1/8W R:FXD MET FLM 10 OHM 13 1/8W	28480 28480 28480 28480 28480 28480	00432-6004 0757-0346 0757-0346 0757-0346 0757-0346
А4R5 А4R6 А4R7 А4R8 А4R8 А4R9	07 57~0346 07 57~0346 07 57~0346 07 57~0346 07 57~0346 07 57~0346		R:FXD NET FLM 10 OHM 1% 1/8W R:FXD MET FLM 10 OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0346 0757-0346 0757-0346 0757-0346 0757-0346
A4R10 A4R11 A4R12 A4R13 A4R13 A4S1	07 57-0346 07 57-0346 07 57-0346 0698-6635 3100-2469	1 1	RIFXO MET FLM 10 OHM 13 1/8W RIFXD.MET FLM 10 OHM 13 1/8W RIFXD MET FLM 10 OHM 13 1/8W RIFXD MET FLM 880 OHM 13 1/8W Switch:Rotary	28480 28480 28480 28480 28480 28480	0757-0346 0757-0346 0757-0346 0698-6635 3100-2469
AS A6 A7 A7 A7C1	00432-6007 0160-2930	1	NOT ASSIGNED Not Assigned Bdard Assy:Battery Charger Ifur Option Doll C:FXD CER 0.01 UF +80-20% 100VDCW	28480 91418	00432-6007 Ta
A7CR1 A7CR2 A701 A702 A703	1901-0026 1902-0048 1854-0039 1853-0020 1854-0071	1	DIDDE:SILICON 0.75A 200PIV DIDDE:BREAKDOWN 6.81V 53 TSTR:SI NPN TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704)	04713 04713 80131 28480 28480	SR1358-8 SZ10939-134 2N3053 1853-0020 1854-0071
А704 А7R1 А7R2 А7R3 А7R4	1854~0071 0698~3635 0757~0280 0757~0346 0757~0439	1	TSTR:SI NPNISELECTED FROM 2N3704) R:FXD MET DX 680 DHM 5% 2N R:FXD MET FLM 1K DHM 1% 1/8W R:FXD MET FLM 10 DHM 1% 1/8W R:FXD MET FLM 6.81K DHM 1% 1/8W	28480 28480 28480 28480 28480 28480	1854-0071 0698-3635 0757-0280 0757-0346 0757-0439
47R5 47R6 47R7 47R7 47R8	0757-0280 0757-0199 0698-3156 2100-1776	1	R:FXD MET FLM 1K DHM 1% 1/8W R:FXD MET FLM 21.5K DHM 1% 1/8W R:FXD MET FLM 14.7K DHM 1% 1/8W FACTORY SELECTED PART R:VAR WW 10K DHM 5% TYPE H 1W	28480 28480 28480 28480	0757-0280 0757-0199 0698-3156 2100-1776

Table 6-1	. Replaceable	Parts
-----------	---------------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
		. ·			
81 81	1420-0062	ĩ	CHASSIS & MISCELLANEOUS PARTS BATTERY:RECHARGEABLE 24V {OPT 001}	28480	1420-0062
C1 C2	0160-3043 0180-0197	1	C:FXD CER 2 X 0.005 UF 20% 250VAC C:FXD ELECT 2.2 UF 10% 20VDCH	56289 56289	29C147A-CDH 150D225x9020A2-D¥S
C2 DS1	2140-0244	1	(OPT 011, 012, 013) Lamp;glow miniature 95V	87034	A1H
F1 J1	2110-0234 1251-1280	1	FUSE:0.1 AMP 250V SLOW-BLOW	75915	313-100/5
J1	00432-2005	1 1	CONNECTOR:AUDIO 6 FEMALE CONTACTS NUT:CONNECTOR	28480 28480	1251-1280 00432-2005
3C	1250-0118 1250-0118	3	CONNECTOR: BNC Connector: BNC	24931	28JR 128-1
j4	1250-0118		CONNECTOR: BÁC	24931 24931	28JR 128-1 28JR 128-1
15 15	1251-2357	1	SOCKET:3-PIN MALE POWER RECEPTACLE (Part of Rear Panel)	82389	EAC-301
1	1120-1497	1	METER	28480	1120-1497
(P1 (P1	0370-0077	1	KNUB:SKIRTED BAR FOR 0-250" DIA SHAFT (Range)	28480	0370-0077
1P2 1P2	0370-0193	1	KNUB:RDTARY POINTER BLACK (Cal Factor)	28480	.0370-0193
IP3 IP3	0370-0432	1	KNOB:BLACK LEVER	28480	0370-0432
184	5040-0345	6	(MT. RES.) INSULATUR: CONNECTOR (LIGHT GRAY)	28480	5040-0345
1 P 4 1P5	5040-0702 0403-0131	6 2	INSULATOR:CONNECTOR(BLACK) Guide:P.C. Board, Grey	28480 28480	5040-0702 0403-0131
P6 P6	0403-0026	1	GLIDE:NYLON	28480	0403-0026
P6	00432~0005	1	(OPT 001) BRACKET:TRANSFORMER	28480	00432-0005
P7 P8	00432-0006 00432-0007	1	DECK:LOWER DECK:UPPER	28480 28480	00432-0006 00432-0007
P9	00432-0011	1	BRACKET : FRAME	28480	00432-0011
1 1	2100-2849 2950-0034	1	R:VAR WW 50K OHM 3% LIN 2W Nut:Hex brass 3/8-32 X 1/24	28480 28480	2100-2849 2950-0034
1 2	00432-2004 0811-2538	1 4	BUSHING:PANEL R:FXD WW 100 DHM 0.1% 1/10W	28480 28480	00432-2004 0811-2538
3	0811-2538		R:FXD WH 100 DHM 0-13 1/10W	28480	0811-2538
14 15	0811-2538 0811-2538		R:FXD WW 100 DHM 0-1% 1/10W R:FXD WW 100 DHM 0-1% 1/10W	28480 28480	0811-2538 0811-2538
R6 R7	0757-0984 0757-0984	2	R:FXD NET FLM 10.0 DHM 1% 1/2W R:FXD NET FLM 10.0 DHM 1% 1/2W	28480 28480	0757-0984 0757-0984
18 R9	0757-0198		RIFXD MET FLM 100 DHM 1% 1/2W	284 80	0757-0198
10	0757-0458 0757-0200	1	R:FXD MET FLM 51-1K OHM 1% 1/8W R:FXD MET FLM 5-62K OHM 1% 1/8W	284 80 284 80	0757-0458 0757-0200
10	0698-3151	ì	(FOR OPT 011) R:FXD MET FLM 2.87K OHM 1% 1/8W	28480	0698-3151
10	0757-0317	1	(OPT 012) R:FXD MET FLM 1.33K OHM 1% 1/8W	30400	0767-0317
	0757-0288	1	(FOR OPT OIL) (FOR OPT OIL) (FXD MET FLM 9-09K OHM 1% 1/8W	28480	0757-0317
	0131-0200	L	(FOR OPT 011)	28480	0757-0288
11	0698-3155		R:FXD MET FLM 4-64K OHM 1\$ 1/8#	28480	0698-3155
	0698-0084		(OPT 012) R:FXD MET FLM 2.15K OHM 1% 1/8W	28480	0698-0084
11	0698-3156		(DPT 013) R:FXD MET FLM 14.7K OHM 1% 1/8W	28480	0409-2154
12	0698-3158	1	(OPT 012) RIFXD MET FLM 23.7K OHM 1% 1/8W	28480	0698-3156 0698-3158
13	0811-2277	•	(OPT 012) R:FXD WW 10K DHM 0.1% 1/40W	28480	0811-2277
51	3101-1395	1	SWITCH: PUSHBUTTON DPDT-DB	76854	53-67280-121/A1H
51 52	3101-1234	1	(POWER) SWITCH:SLIDE DPDT	82389	114-1242
52 53	3100-2485	1	(PART OF REAR PANEL) Switch:Lever single section	76854	TYPE 184
53 53	00432-00031		(MT. RES.)		00/22 00000
53 54 54	3101-1357	1 1	SWITCH PLATE Switch:Toggle Spot	284.80 09353	00432-00031 7109
54	00432-2003	1	(FINE ZERO) NUT:DRESS	28480	00432-2003
w1 w1	8120-1082 8120-1083	1	CABLE ASSY:5 FT CABLE ASSY:SPECIAL PURPOSE(10 FT)	28480	8120-1082
1	1		(OPT 009) CABLE ASSY:SPECIAL PURPOSE(20 FT)	28480 28480	8120-1083
•1	8120-1084	1 .			8120-1084

1 1120-1359 1 THERMO CASE SPECIAL PURPOSE 100 PT) 28400 8120-1360 1 120-1361 1 THERMO CASE SPECIAL PURPOSE 100 PT) 28400 8120-1361 1 120-1361 1 THERMO CASE SPECIAL PURPOSE 100 PT) 28400 8120-1361 1 120-1361 1 THERMO CASE SPECIAL PURPOSE 100 PT) 28400 8120-1361 1 120-1361 1 THERMO CASE SPECIAL PURPOSE 100 PT) 28400 8120-1361 1 120-1361 1 Contract Purpose 100 PT 70000 70000 1 121-172 2 Contract Purpose 100 PT 70000 70000 70000 1 121-172 2 Contract Purpose 100 PT 710780 200-22-30-210 1 121-172 2 Contract Purpose 100 PT 710780 200-22-30-210 1 100-010 1 PUEHOLOBELETACTOR POST TYPE 28400 20432-0009 3F1 1400-0004 1 PUEHOLOBELETACTOR POST TYPE 79135 342014 <th>Reference Designation</th> <th>HP Part Number</th> <th>Qty</th> <th>Description</th> <th>Mfr Code</th> <th>Mfr Part Number</th>	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
1 0120-1360 1 1 1007-011 23400 8120-1360 1 107 012 1007-012 24400 8120-1360 8120-1360 1 107 012 1007-012 24400 8120-1360 8120-1361 1 107 012 1007-012 7003 1007-012 7003 1007-012 1 1230-0120 1 1241 120-1360 11 1007-012 7003 1007-012 1 1230-0172 1 1241 1230-0172 12 1007-012 71075 220-22-02-20 1 1240-000 1 1007-001 71075 220-22-02-20 200-22-0020 12 120-22-0020 120-22-02-02-02-02-02-02-02-02-02-02-02-0		8120-1359	1	THERMO CABLE:SPECIAL PURPOSE(50 FT)	28480	8120-1359
L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L		8120-1360	1	(OPT 011)	28480	8120-1360
N2 B120-13-04 COPT 0133 Construction Top 10 X41 00532-00.0 1 CARE ASSYSTMER, DETACHARE 709.00 X42 1251-0172 2 Construction F Edde 1 RW 22 CONTACT 71.785 230-22-30-21.0 X43 00532-00.08 1 Construction F Edde 1 RW 22 CONTACT 71.785 230-22-30-21.0 X43 00532-00.08 1 React FE ANTERY UPPER 2460 00632-00.08 X41 00432-00.09 1 REACT FE ANTERY UPPER 2460 00632-00.08 X41 00432-00.09 1 FUSEWALDER KERACTOR POST TYPE 759.15 246.09 X41 0440-0004 1 FUSEWALDER KERACTOR POST TYPE 759.15 342.014	W1			(OPT 012)		
L2 bit bit bit bit bit bit bit bit bit bit			-		20400	0120 1301
XA2 XA2 XA1 XA1 XA1 XA1 L251-0172 00432-0009 I I I COUNTCIDENCE DOCE I ROU 22 CONTACT IN LOWER T1785 250-22-30-210 00432-0008 XF1 J00-0084 I FUSEHOLDER/EXTRACTOR POST TYPE 75915 342014 XF1 J00-0084 I FUSEHOLDER/EXTRACTOR POST TYPE 75915 342014	W2 W3 XA1	00432-6010	1	CABLE ASSY:POWER, DETACHABLE Cable Assy:Power Switch Connector:PC Edge 1 Row 22 Contact	28480	00432-6010
XA2 BB1 B1 291 00432-0009 1 IPART OF LURGE DEC13 BIOLOGISTATIENT UNFER 00432-0009 28480 00432-0009 XF1 1400-0084 1 FUSEHOLDERIEXTRACTOR POST TYPE 75913 342014	XA2	1251-0172		CONNECTOR:PC EDGE 1 ROW 22 CONTACT	71785	250-22-30-210
XB1 BD1 D0432-0009 1 LAPT 001 UCYT 0013 Z4480 00432-0009 XF1 1400-0084 1 FUSEHOLDER:EXTRACTOR POST TYPE 75935 342014		00432-0008	1			
XF1 1400-3084 1 FUSENCIDER: EXTRACTOR POST TYPE 75915 342014	XB1			(GPT 001)		
		00432-0007	1		28480	00432-0009
	XF1	1400-0084	I	FUSEHOLDER:EXTRACTOR POST TYPE	75915	342014

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
1 2 3 4 5 6 6 7 7 7 8 8 8 9 10 10 11 11	5060-0703 1490-031 5040-0700 5060-0727 5020-0700 5000-0703 5000-8565 5060-0706 5060-8569 5000-0711 5000-8571 00432-00021 00432-00021 00432-00033 5020-0704 5020-7633		CABINET PARTS FRAME ASSY:6 X 11 SM STAND:TILT HINGE FUDT ASSY SPACER:CABINET SIDE COVER-BLUE GRAY SIDE COVER-BLUE GRAY TOP COVER-BLUE GRAY BOTTOM COVER-BLUE GRAY BOTTOM COVER-BLUE GRAY BOTTOM COVER-DLIVE GRAY REAR PANEL FRONT PANEL-LIGHT GRAY HETER TRIM: - MINT GRAY METER TRIM: - MINT GRAY	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 50436 50436 50436 28480 28480	5060-0703 1490-0031 5040-0700 5060-0727 5020-0700 5000-0703 5000-8565 5060-0706 5060-0706 5060-0711 5000-8571 00432-00022 00432-00021 00432-00033 5020-0704 5020-7633

Table 6-1. Replaceable Parts

Table $6-2$.	Code	List	of	Manufacturers
---------------	------	------	----	---------------

4328	MANUFACTURERS CODE LIST	AS OF 06/03/72	PAGE 3
MFR NO.	MANJFACTURER NAME	ADDRESS	Z I P CODE
01121 01295 04713 07263 09353 24931 28480 5043n 56289 70903 71765 72982 75915	ALLEN BRADLEY CO. TEXAS INSTRUMENTS INC. SEMICONDUCTOR COMPONENTS DIV. MUTOROLA SEMICONDUCTOR PRODINC. FAIRCHILD CAMERA & INST. CORP. SEMICUNDUCTOR DIV. C & K COMPONENTS INC. SPECIALTY CONNECTOR CO. INC. HEMLETT-PACKARD CO. COMPORATE 40 HEMLETT-PACKARD CO. MICROWAVE DIV SPARGUE ELECTRIC CO. REIDEN CORP. CINCH MEG. CO. DIV TRW INC. ERIE TECHNOLOGICAL PROD. INC. LITTELEUSE INC.	MILWAJKEE, #IS. DALLAS, TEX. PHDENIX, ARIZ. MOUNTAIV VIEW, CALIF. NEWION, MASS. INDIANAPOLIS, IND. PALO ALTO, CALIF. PALO ALTO, CALIF N. ADAMS, MASS. CHICAGO, ILL. ELK GROVE VILLAGE, ILL. ERIE, PA. DES PLAINES, ILL.	53204 75231 85008 94040 02158 46227 94304 94304 01247 60644 16512 60016
76854 79727 80131 82389 84411 87034 91418	DAK MEG. CO. DIV. DAK ELECTRO/NETICS CORP. CONTINENTAL-JIRT FLECTRONICS CORP. ELECTRONIC INDUSTRIES ASSOCIATION SWITCHGRAFT INC. TRW CAPACITOR DIV. MARCDAK INDUSTRIES RADIO MATERIALS CO.	CRYSTÂL LAKE, ÎLL- Warminster, PA. Washington D.C. Chicagg, îll. Dgallala, Nebr. Anameim, Calif. Chicago, îll.	50014 18974 20006 60630 69153 92803 60646

SECTION VII

TROUBLESHOOTING, SCHEMATICS, AND COMPONENT LOCATIONS

7-1. INTRODUCTION.

7-2. This section contains troubleshooting instructions, schematics, and component locations for the power meter. Also included is an overall block diagram that indicates the location of test points in the instrument.

7-3. Reference designations shown within circuit card outlines are abbreviated. To find the part in the Parts List, use the full reference designation. For example, R6 on the A2 Meter Logic Assembly is listed as A2R6.

7-4. The Schematic Notes in Table 7-1 pertain to all the schematics. Additional notes on the schematics indicate test conditions, and special information for use when maintaining the instrument.

7-5. TROUBLESHOOTING.

7-6. Table 7-2 is the Overall Troubleshooting chart for the power meter. Procedures for isolating circuit malfunctions to specific stages are based on the use of the HP 8477A Power Meter Calibrator and the calibration procedures in Section V. The information obtained when calibration is attempted is used to troubleshoot the instrument.

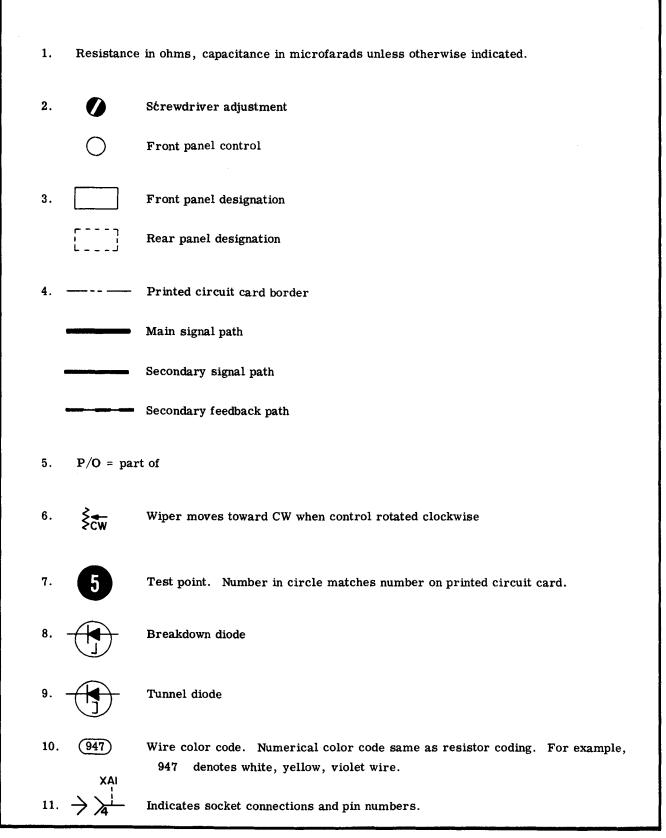
7-7. Table 7-2 contains references that direct the user to the detailed troubleshooting charts, Tables 7-3 through 7-11. The detailed charts refer the user to transistor stages. In a few instances, specific parts are called out as being possible causes of circuit mal-function, however, the troubleshooting charts are not intended to locate specific parts that havefailed. They are intended to locate only malfunctioning stages.

7-8. SCHEMATICS.

7-9. The schematics contain signal routing information, nominal voltage levels, and notes that assist in understanding the circuit. They are laid out to show electrical operation, and are not intended as wiring diagrams. 7-10. Component location photographs next to the schematic foldouts indicate the physical location of parts. Test points are also shown, and are marked on the schematic in the same manner as they are in the meter.

7-11. Factory selected parts are indicated by an asterisk. These are components that generally are installed to fulfill circuit operation requirements. They may be the nominal value, or they may be some value close to nominal. In any case, if the component fails, circuit operation should be verified after these components are replaced.

7-12. A1A1 AUTO ZERO ASSEMBLY.

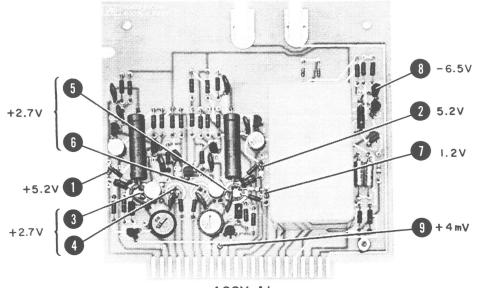

7-13. The Auto Zero circuit is encapsulated and must be replaced as a unit. A solder removing tool, such as the Soldapullit suction device listed in Section V, is required to remove solder around the leads. After solder is removed, the unit must be carefully removed from the circuit card in such a manner that the circuits on the card do not delaminate. After the Auto Zero assembly is replaced, perform the adjustment procedure given in Section V.

7-14. TEST CONDITIONS.

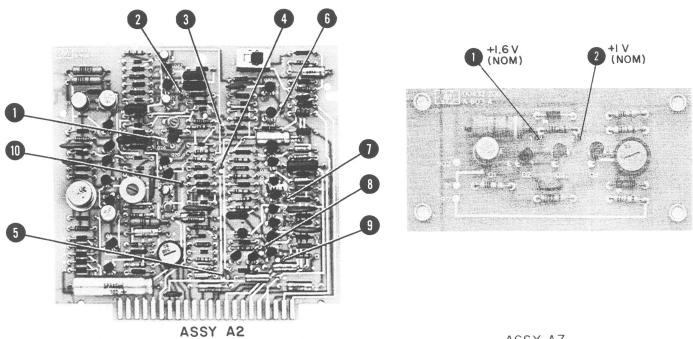
7-15. For most tests of circuit operation when troubleshooting the instrument, the troubleshooting charts call out control settings. In special cases, notes on the schematics indicate control settings required to measure voltage levels in circuits. Generally, the following control settings should be selected, and changed only as the troubleshooting procedures indicate:

RANGE	.3 mW (-5 dBm)
MOUNT RESISTANCE 200	(Mount installed)
CALIBRATION FACTOR	100
COARSE ZEROturn until met	er is at full scale

Table 7-1. Schematic Notes

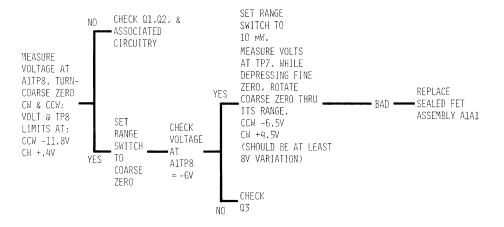

TEST POINT MEASUREMENT CONDITIONS AND VOLTAGES

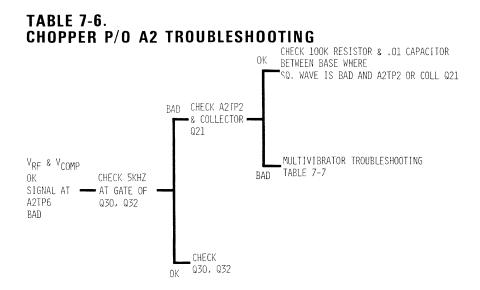
Measurement Conditions


- 1. .3 mW
- 2. 200 ohm mount
- 3. 100% Cal Factor
- 4. COARSE ZERO turned to get full-scale deflection
- 5. Measurements made with respect to CHASSIS GROUND

Test Point Voltages

Test Point	Voltage	Notes
A1TP1	+5.2	
A1TP2	+5.2	
A1TP3	+2.7	
A1TP4	+2.7	
A1TP5	+2.7	
A1TP6	+2.7	
A1TP7	+1.2	RANGE to COARSE ZERO, meter zeroed
A1TP8	-6.5	Varies from 0 to -13 V under normal operating conditions
A1TP9	+4 mV	Thermistor ground
107771	TT 7	T: 7.0
A2TP1	Waveform	Figure 7-3
A2TP2	Waveform	Figure 7-3
A2TP3	+7 Nominal	
A2TP4	-13 Nominal	
A2TP5	0 V	Chassis Ground
A2TP6	Waveform	Figure 7-3
A2TP7	Waveform	Figure 7-3
A2TP8	Waveform	Figure 7-3
A2TP9	Waveform	Figure 7-3
A2TP10	Waveform	Figure 7-3
	4 ** • • • •	
A7TP1	+1 Variable	
A7TP2	+1.6 Variable	




ASSY AI

ASSY A7

TABLE 7-5. AUTO ZERO CIRCUIT P/O A1 TROUBLESHOOTING

SERVICE HINT: IF TROUBLESHOOTING CHOPPER FOR NOISE, LIFT END OF C29 & C31 AND SEE IF NOISE PERSISTS.

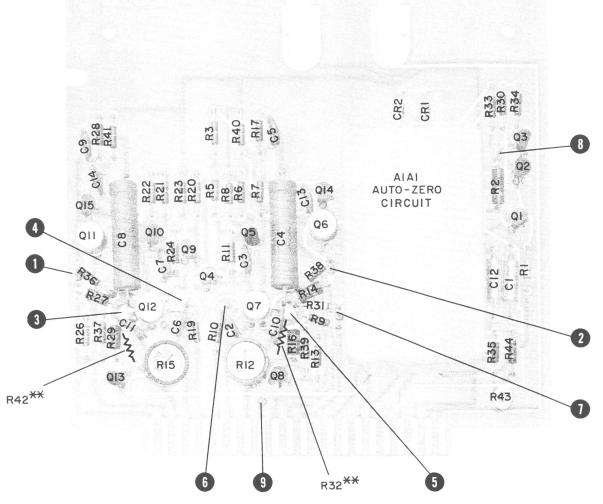


Figure 7-7. A1 Bridge Assembly Component Locations

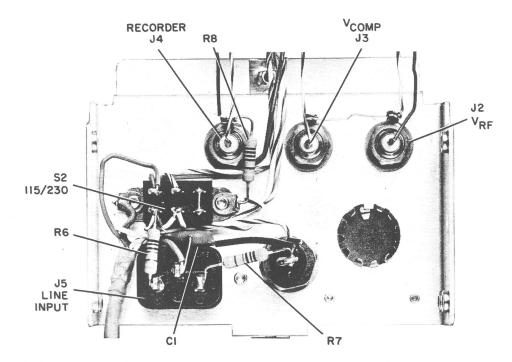


Figure 7-8. 432A Rear Panel Interior

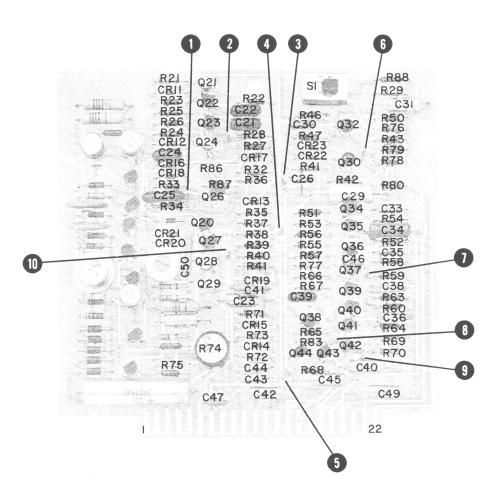


Figure 7-11. A2 Meter Logic Assembly Component Locations

APPENDIX I

MANUAL CHANGES

(22 OCTOBER 2007)

Notification

Obsolescence of Model 432A-100

The Reason for Obsolete Model 432A-100

Model 432A-101 was obsolete in November 2005 due to parts depletion.

Replacement product for Model 432A-100

The Model 432A- 100 has been replaced with Model 432- 101 as this product supports 100 VAC line voltage input.

Ordering Information

Customers should place order for Model 432A-101 instead of Model 432A-100.

APPENDIX II INSTALLATION OF LONG CABLE OPTIONS

AII-1. Information in this appendix describes installation of the long cable options used with the 432A Power Meters. Table AII-1 lists the options, cable length and stock numbers. After completion of the installation procedures, the power meter should be recalibrated using the procedures in Section V of this manual.

NOTE

These cable option kits are for mount resistances of either 100 or 200 ohms.

AII-2. Depending on the option selected, the following components are added or replaced with parts supplied with the option kits:

- a. C2
- b. R10, R11, R12 and R13
- c. A1R32 and A1R42
- d. A2C45

AII-3. The following equipment is required for the installation of the long cable options:

- a. Soldering Tool, wattage rating: 37.5
- b. De-soldering aid
- c. Pozidriv screwdriver (small)
- d. Pozidriv screwdriver (medium)

Table AII-1. 432A Power Meter Long Cable Options

Option	Kit Number	Cable Length (feet)
009	00432-6018	10
010	00432-6019	20
011	00432-6020	50
012	00432 - 6021	100
013	00432-6022	200

AII-4. No substitution can be made for long cables listed in Table AII-1. Long cables from the older power meters, such as the 431 series, cannot be interchanged with 432A long thermistor cables because of resistance variations.

AII-5. If a long cable option of 20-feet or longer is used with a *balanced* thermistor mount such as the HP 8478B, pins 2 and 4 must be shorted at the mount end of the cable. This short can be accomplished with an 11527A Adapter available from Hewlett-Packard. The 11527A, connected between the mount and the cable, can be removed for instrument operation with an unbalanced mount.

NOTE

If a 432A has been modified for a particular cable option, it is incompatible with all other cable lengths.

AII-6. The parts required for the modification are listed in Table 6-1 and shown on the appropriate Service Sheet.

AII-7. OPTION 009 INSTALLATION.

AII-8. Option 009 (10-foot cable) requires no modification to the 432A Power Meter. The longer cable is substituted for the standard five-foot thermistor cable.

AII-9. OPTION 010 INSTALLATION.

a. Remove the right side and top covers from the 432A. Remove the A1 Bridge Assembly circuit board from the instrument.

b. Referring to Figure 7-7, locate the board position where A1R42 is to be placed. Install the 261K, 1%, 0.125W resistor, supplied with the kit, in that position.

c. Place the modification decal on the top center of the front panel.

d. This completes the Option 010 installation. Before replacing the top and side panels, connect the ten-foot cable and perform the bridge amplifier adjustments in Section V of this manual.

AII-10. OPTION 011 THROUGH 013 INSTAL-LATION.

a. Remove both side, top and bottom covers. Remove the A1 Bridge Assembly.

b. Locate the printed circuit board eyelets in which A1R32 and A1R42 are to be placed by referring to Figure 7-7. Note that one end of these resistors will be placed inside the guard rings that attach to the bases of A1Q12B and A1Q7B. There is a vacant eyelet provided inside the guard rings to make this connection.

c. Install the correct value A1R32 and A1R42 for the desired option.

d. Place the 432A on its top; Figure 7-5 reveals the location of bridge resistors R3 and R5 on terminal strip XA1. Select the proper values of resistors R10 and R11 from the option kit. Solder R11 across pins 3 and 5 of XA1 in parallel with R5 and solder R10 across pins 6 and 8 of XA1 in parallel with R3.

e. Locate the MOUNT RESISTANCE switch S3 on the back of the front panel. Bridge resistors R2 and R4 are wired to the rear of S3

(see Figure 7-6). Choose the resistors supplied with the option kit for R12 and R13. Solder R12 across R2 and R13 across R4.

f. Capacitor C2 $(2.2 \ \mu F)$ is connected across the rear of the FINE ZERO switch S4 (see Figure 7-6). With the instrument resting on its top, wire the positive lead of C2 to the terminal of S4 with the white/black/violet (907) wire and the negative lead to the terminal with the violet (7) wire.

g. Remove the A2 Meter Logic Board. A2C45 by referring to Figure 7-11.

Remove the 60 μ F capacitor and replace it with the 300 μ F capacitor supplied with the option kit. Observe the polarity as marked on the circuit board.

h. Place the modification decal on the top center of the front panel.

i. This completes the modification. Install the A1 and A2 boards back in the instrument. Perform the adjustment procedures in Section V of this manual with the long cable.

POST-SALES / SUPPORT ADDRESS LISTo

If you need technical assistance with a Hewlett-Packard test and measurement product or application please contact the Hewlett-Packard office or distributor in your country.

Asia Pacific:

Hong Kong: (852) 2599 7889

India: (91-11) 682-6000

Japan: Hewlett-Packard Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan Tel: (81) 426-56-7832 Fax: (81) 426-56-7840

Korea: (82-2) 769 0800

Malaysia: (60-3) 291 0213

Philippines: (63-2) 894 1451

PRC: (86-10) 6505 0149

Singapore: (1800) 292 8100

Taiwan: (886-3) 492 9666

Thailand: (66-2) 661 3900

For countries in Asia Pacific not listed, contact: Hewlett-Packard Asia Pacific Ltd 17-21/F Shell Tower, Times Square, 1 Matheson Street Causeway Bay Hong Kong Tel: (852) 2599 7777 Fax: (852) 2506 9285

Australia/New Zealand:

Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 Australia 1 800 629 485

Canada:

Hewlett-Packard Canada Ltd. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (905) 206 4725

Europe, Africa and Middle East:

Austria: (0)1 25000-0

Belgium and Luxembourg: (02) 778 3417

Baltic Countries (358) 08872 2100

Czech Republic: 420-2-4743111

Denmark: 45 99 10 00

Finland: (90) 88 721

France: (0)1 69.82.60.60

Germany: (0180) 532 62-33

Greece: 30-1-7264045

Hungary: 36-1-4618219

Ireland: (01) 284 4633

Israel: 972-3-5380333 Italy:

02 - 92 122 241 Netherlands:

(020) 547 6669

Norway: (22) 73 57 50

Poland: 48-22-6087700

Portugal: (11) 482 85 00

Russia: (7/095) 928 6885 Fax: (7/095) 916 9844

South Africa: 27-11-8061000

Spain: (34) 1 631 1323

Sweden: (08) 444 22 77

Switzerland: (01) 735 7111

Turkey: 90-212-2245925

United Kingdom: (01344) 366 666

For countries in Europe/Middle East and Africa not listed, contact: Hewlett-Packard International Sales Europe Geneva, Switzerland Tel: +41-22-780-4111 Fax: +41-22-780-4770

Latin America:

Hewlett-Packard Latin American Region Headquarters 5200 Blue Lagoon Drive 9th Floor Miami, Florida 33126 U.S.A. Tel: (305) 267-4245 (305) 267-4220 Fax: (305) 267-4288

United States:

Hewlett-Packard Company Test and Measurement Organization 5301 Stevens Creek Blvd. Bldg. 51L-SC Santa Clara, CA 95052-8059 1 800 452 4844